

AC SERVO DRIVES

MECHATROLINK-II COMMUNICATIONS TYPE SERVOPACK TYPE SJDE SERVOMOTOR TYPE SJME

Great Stability despite Load Changes!

High-speed Network MECHATROLINK- II Communications Type JUNNA*

Like speed skaters, who compete by using refined skills to maintain high speeds both linearly and on curves...

The JUNMA M-I

servo drive can maintain steady operation at high speed by automatically adjusting the speed to compensate for load change in real time. There is no need to bother with parameter settings and gain adjustments, which are usually required for servo drives.

See for yourself how the JUNMA M-II can improve performance, response, and usability of your machine.

Features

Automatic speed adjustment when load changes! Quick and efficient setup!

- Connect and go! Shared concept with other products in the JUNMA series. No troublesome parameter settings and gain adjustments needed.
- Equipped with a constant automatic adjustment function that quickly reacts to load changes, the JUNMA-II brings steady operation to applications with high frequency speed and torgue changes.

Added value with MECHATROLINK-II communications!

- Requires less space and less wiring. You can build the system to your own need because the YASKAWA AC servo drives, as well as various devices made by member companies of the MECHATROLINK Members Association, can be connected to your system.
- Startup time is greatly reduced by incorporating a machine controller from the YASKAWA MP2000 series. Servomotor information, including position, speed, motor ID, servo parameters, and error information, is digitally managed to simplify monitoring and maintenance.

Enhanced control functions!

- High-precision and high-performance positioning. The position reference, speed reference, and acceleration/deceleration time can be changed in real time during positioning.
- External positioning function using position latch signal: Detects the accurate position when a latch signal is received and adjusts the amount of movement. This is useful for transfer, wrapping, and printing equipment.
- •Zero point return: A zero point can be individually set for each of customer's machines. • Other functions: Interpolation, JOG operation, alarm reset, and other helpful functions.

international

Connect it and, zip' It's ready to go.

System Configuration Example

MECHATROLINK I/O products by member companies in the MECHATROLINK Bit-type Distributed I/O Terr by Anywire Corporatio Inline Bus Coupler (by Phoenix Contact K.K.

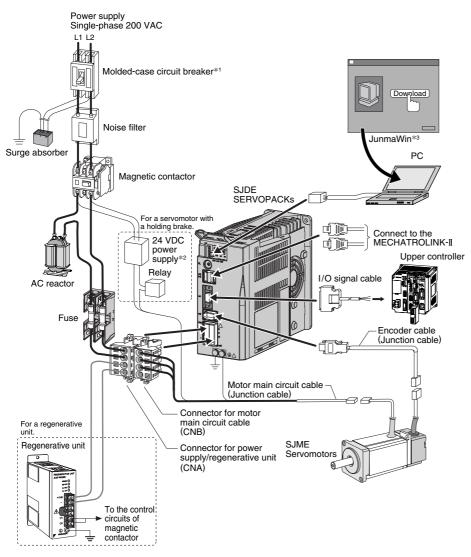
Unpacking Remove the SERVOPACK from the box.

🧲 Wirina Connect the cables for the power supply and signals. Then connect the servomotor, SERVOPACK and the MECHATROLINK-I compatible controller.

needed

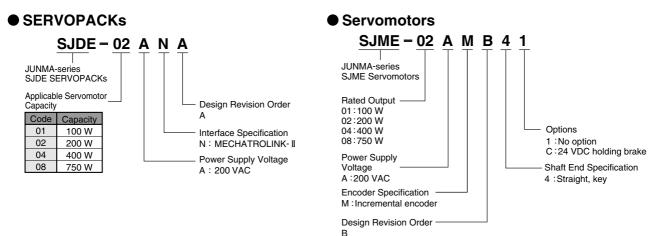
Installation and




Note: Scheduled to conform to the RoHS directive RoHS directive: Restriction of the Use of ertain Hazardous Substances in Electrica d Electronic Equipment

CONTENTS

System Configuration		
System Configuration Model Designation	4	
Model Debignation		
Selection of Devices	5	
Selection of Devices	5	
Comiomotoro	0	
Servomotors	8	
SERVOPACKs	10	
Connection Diagram	14	
Installation	18	
Cable and Connector		
Dimensions	20	
Peripheral Device		
Dimensions	25	
Engineering Tool	28	
Selection of		
Servomotor Size	29	
Reference	36	


Connection to Peripheral Devices

* 1 : Install a ground fault interrupter to protect against both overloads and shortcircuits, or install a ground fault interrupter for ground protection and a molded-case circuit breaker.

- * 2 Prepare 24 VDC power supplies for a holding brake and I/O signals.
- * 3 : JunmaWin software can be downloaded from http://www.e-mechatronics.com.

Model Designation

Cables and Connectors

Name	Туре		Model	Length	Appearance	Ref. Page	Contact
			JZSP-CHM000-03	3 m			
			JZSP-CHM000-05	5 m			
0	Without holding	brake	JZSP-CHM000-10	10 m			
Servomotor Main			JZSP-CHM000-15	15 m		D 00	Yaskawa
Circuit Cables with			JZSP-CHM000-20	20 m			
Connectors at			JZSP-CHM030-03	3 m		P.20	Local Office
Both Ends			JZSP-CHM030-05				
(Junction Cables)	With holding bra	ake	JZSP-CHM030-10	10 m			
			JZSP-CHM030-15	15 m			
			JZSP-CHM030-20	20 m			
Connector Kits for	To Servomotor Plug (For servomotors w/wo brake)	Crimp Type	JZSP-CHM9-1*2	_	Ē	P.21	Yaskawa Local Office
Servomotor Main Circuit Cable*1	To SERVOPACK	Spring Type	JZSP-CHM9-2*3	_		P.21	Yaskawa Local Office
	(For servomotors w/wo brake)	Crimp Type	Receptacle: F32FSS-04V-KY×1 Receptacle contact: SF3F-41GF-P2.0×4 Crimping tool: YRF-880	_		P.21	J.S.T.Mfg Co., Ltd
Power Supply and Regenerative Unit Connector Kits*1	To SERVOPACK CNA Spring Type		JZSP-CHG9-1*3	_		P.21	Yaskawa Local Office
			JZSP-CHP800-03	3 m			
Encoder Cables with	Connectors at Bo	th Ende	JZSP-CHP800-05	5 m			Yaskawa
(Junction Cables)	Connectors at Do	LIUS	JZSP-CHP800-10	10 m		P.22	Local Office
(Junction Cables)			JZSP-CHP800-15	15 m			
			JZSP-CHP800-20	20 m			
	To Servomotor	Crimp Type	JZSP-CHP9-1*2	-			
Encoder Cable Connector Kits*1	To SERVOPACK	Soldered Type(Black)	JZSP-CHP9-2	_		P.22	Yaskawa Local Office
	CN2	Soldered Type(Gray)	JZSP-CHP9-3	-			
			JZSP-CHI003-01	1 m			
I/O Signal Cables			JZSP-CHI003-02	2 m			Yaskawa
			JZSP-CHI003-03	3 m		P.23	Local Office
I/O Signal Connector Kits*1	For SERVOPACK	Soldered Type	JZSP-CHI9-1	-			Local Office
	Cable with Con	nectors	JEPMC-W6002*5	_			
	at Both Ends*4		JEPMC-W6002-	_	-00		
	(Without Ferrite	Core)	(Compliant with RoHS Directive)				
MECHATROLINK- II	Cable with Con	nectors	JEPMC-W6003-	-			
Communication	at Both Ends*4		JEPMC-W6003-	_	- () - ()		Yaskawa
Cable	(With Ferrite Co	ore)	(Compliant with RoHS Directive)				
			JEPMC-W6022-	_		-	Local Office
	Cables		JEPMC-W6022-	_		_	
			(Compliant with RoHS Directive)				
Cable for Personal Computer			JZSP-CPS00-02	2 m	₽		

*1: Sold separately. If making cable assemblies, these connectors are necessary.
*2: Refer to page 21 for the crimping tool model number. The crimping tool must be prepared by customers.
*3: With tool (lever for wiring).

*4: The total cable length must be 50 m max. and the cable length between stations 0.5 m min.

*5: Specify the cable length in __ when ordering as shown in the table below.

	Cable length m		Cable length m
A5	0.5	10	10
01	1.0	20	20
03	3.0	30	30
05	5.0	40	40
07	7.0	50	50

SERVOPACKs and Applicable Peripheral Devices

Rated Output	Servomotor Without Holding Brake With Holding Brake		SERVOPACK	Power Supply Capacity per SERVOPACK KVA	Current Capacity for Molded- case Circuit Breakers Arms	Current Capacity and Model of External Fuse	Inrush Current (A _{0-P})	Magnetic Contactor
100 W	SJME-01AMB41	SJME-01AMB4C	SJDE-01ANA	0.40	4			
200 W	SJME-02AMB41	SJME-02AMB4C	SJDE-02ANA	0.75	4	0KLK015.T (15 Arms)	30	HI-11J
400 W	SJME-04AMB41	SJME-04AMB4C	SJDE-04ANA	1.2	8	(15 Anns)		
750 W	SJME-08AMB41	SJME-08AMB4C	SJDE-08ANA	2.2	16	0KLK030.T(30 Arms)	60	HI-15J
Manufacturer	Yaska	wa Electric Corpor	ation	—	—	Littelfuse Inc.	—	Yaskawa Controls Co., Ltd.
Contact	Yaskawa Local Office			—	_	Yaskawa Local Office	-	Yaskawa Local Office
Details		_		—	-	P.25	-	P.24

Rated Output	Servomotor Without Holding Brake With Holding Brake		SERVOPACK Noise Filter		Surge Absorber	AC Reactor	Regenerative Unit
100 W	SJME-01AMB41	SJME-01AMB4C	SJDE-01ANA	EN0070 0/07		X5052	
200 W	SJME-02AMB41	SJME-02AMB4C	SJDE-02ANA	FN2070-6/07	D 0 M 001D07 4	X5053	
400 W	SJME-04AMB41	ME-04AMB41 SJME-04AMB4C		FN2070-10/07	R·C·M-601BQZ-4	X5054	JUSP-RG08D
750 W	SJME-08AMB41	SJME-08AMB4C	SJDE-08ANA	FN2070-16/07		X5056	
Manufacturer	Yaskav	wa Electric Corpor	ation	Schaffner Electronic	Okaya Electric Industries Co., Ltd.	Yaskawa Controls Co., Ltd.	Yaskawa Electric Corporation
Contact	Yaskawa Local Office			Yaskawa Local Office	Yaskawa I	Local Office	Yaskawa Local Office
Details		_		P.26	P.	P.25	

Precautions When Selecting Peripheral Devices

Molded-case Circuit Breaker (MCCB)

Observe the following precautions when selecting a molded-case circuit breaker.

<Maximum Input Current>

- The instantaneous maximum output of SERVOPACK is approximately 3 times the rated output and the output can last up to 3 seconds. Select a molded-case circuit breaker whose operating time is 5 seconds or more at 300% of SERVOPACK rated current. The general-purpose low-speed acting molded-case circuit breakers are applicable.
- Rated torque for a molded-case circuit breaker must be equal to or greater than the total power consumption of all devices including the controllers. If using more than one SERVOPACK, calculate an effective load current from the total power supply capacity. The power capacity per SERVOPACK is shown in the table above, SERVOPACKs and Applicable Peripheral Devices.

<Inrush Current>

- Select a molded-case circuit breaker with an allowable current larger than the total inrush current of the SERVOPACKs if multiple SERVOPACKs are turned on at the same time.
- SERVOPACK's inrush current is shown in the table above, SERVOPACKs and Applicable Peripheral Devices.

Ground Fault Interrupter

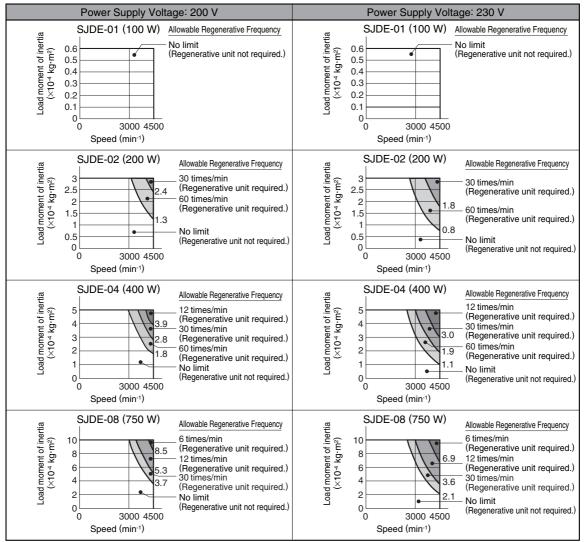
- Use ground fault interrupters for high-frequency compliant inverters. If a general-purpose ground fault interrupter is used, select a rated current of 200 mA or more.
- High-frequency current may leak through the armature of a servomotor due to high-speed switching in the SERVOPACKs.

Magnetic Contactor

A magnetic contactor is required to make the AC power to SERVOPACK on/off sequence externally. Be sure to attach a spark killer to the exciting coil of the magnetic contactor.

Noise Filter

- Install a noise filter on the power supply lines for peripheral devices as necessary.
- Because the SJDE SERVOPACK is designed as an industrial device, it provides no mechanism to prevent noise interference. Use a noise filter to prevent noise interference. If the equipment is to be used near private houses or may receive noise interference, install a noise filter on the input side of the power supply line.
- Place the reference input device and noise filter as close to the SERVOPACK as possible.


Regenerative Units

The rotational energy of driven machines, including the servomotor, is returned to the SERVOPACK as electric power. This is called regenerative power. The power is absorbed by the main capacitor inside the SERVOPACK. When the capacitor has reached its limit in power absorption, the regenerative unit is reguired to dissipate the excess. The servomotor will be driven in the regeneration state in the following circumstances:

- Deceleration period to a stop during deceleration operations.
- During continuous descending operations along the vertical axis.
- During continuous operations with the servomotor rotated from the load side (negative load).

<Allowable Regenerative Frequency>

The following graphs show the allowable regenerative frequency determined by load moment of inertia and motor speed. The graphs show values for the horizontal axis. For the vertical axis, refer to the results obtained with the SigmaJunmaSize+: AC Servomotor Selection Software.

Note : An overvoltage alarm will occur if the regenerative frequency exceeds its allowable limit. This may cause a failure of the regenerative unit.

<Caution>

- The regenerative unit heats up and reaches a high temperature. Use heat-resistant, non-flammable cables and make sure that the cables do not touch the unit. Refer to P16 for the applicable size of cables to connect the unit.
- The regenerative unit has three error detection functions: regenerative resistor disconnection, regenerative transistor fault, and overvoltage detection. When one of these errors is detected, the builtin alarm relay will operate and the C1 and C2 output terminals of the regenerative unit will be opened.
- The power supply (through L1 and L2) to the SERVOPACK must be turned off when the alarm relay turns on.
- Two to three seconds are required to reset the alarm relay once the alarm relay operates. The alarm state will return to normal after the main capacitor in the SERVOPACK finishes discharging.

Ratings and Specifications

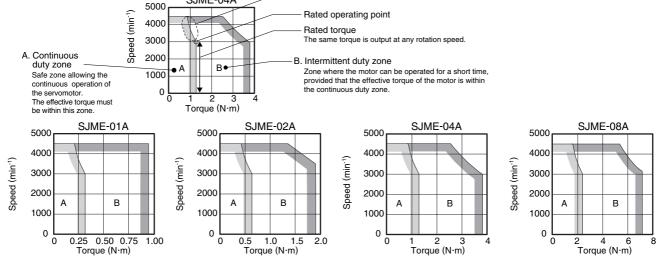
Voltage		-	200	VAC		Description		
Servomotor Model : S	SJME- 🗌 🗆 A	01	02	04	08	Description		
Applicable SERVOPACK Mo	del : SJDE-🔲 🗛	01	02	04	08	-		
Rated Output	W	100	200	400	750	Motor output at the rated operating point		
Rated Torque*	N∙m	0.318	0.637	1.27	2.39	Torque at the rated operating point		
Instantaneous Peak Torque	N∙m	0.955	1.91	3.82	7.16	Maximum instantaneous torque of the motor		
Rated Current	Arms	0.84	1.1	2.0	3.7	Current flowing to the motor at the rated operating point		
Instantaneous Max. Current	Arms	2.5	3.3	6.0	11.1	Maximum current allowed to flow instantaneously to the motor		
Rated Speed	min ⁻¹		30	00		Speed at the rated operating point		
Max. Speed	min ⁻¹		45	00		Highest possible speed		
Torque Constant	N⋅m/Arms	0.413	0.645	0.682	0.699	Generated torque ratio per current flowing to the motor		
Rotor Moment of Inertia	kg⋅m²×10-4	0.0634	0.330	0.603	1.50	Inertia moment at the rotor shaft		
Rated Power Rate	kw/s	16.0	12.3	26.7	38.1	Motor output per unit time		
Rated Angular Acceleration	rad/s ²	50200	19300	21100	15900	The theoretical angular acceleration (also called torque-to-inertia ratio) at the rated torque		
Time Rating			.			"Continuous rating" means that the temperature of the servomotor in continuous		
			Conti	nuous		operation under specified conditions will not exceed a specified temperature or other limitation.		
Thermal Class			E	3		Highest allowable temperature for armature winding : 130°C		
Vibration Class						The maximum vibration amplitude of the motor expressed in units of micrometers on the condition that the		
Vibration Class			V	15		vibration is measured with a vibrometer parallel to the shaft and in two directions perpendicular to the shaft.		
Withstand Voltage			1500 VAC fo	or one minute		-		
Insulation Resistance)		500 VDC, 1	10 M Ω min.		-		
Enclosure		Totally enclosed,	self-cooled, IP55 (ex	cluding shaft openir	g and connectors)	Level of protection from dust and water drops		
Impact Desistance		Impact accele	eration : 490 m/s	in three directio	ns — vertical,	Impact resistance of the motor in three directions (up and down, left and		
Impact Resistance		side to side	e, and front to ba	ck. Impact occu	urrences : 2	right, and back and forth) with the motor shaft mounted horizontally		
		Vibration a	cceleration : 49	0 m/s ² in three	directions -	Vibration resistance of the motor in three directions (up and down, left		
Vibration Resistance		vert	ical,side to side	, and front to b	ack.	and right, and back and forth) with the motor shaft mounted horizontally		

*: The rated torques listed here are the values for the continuous allowable torque at 40°C with an aluminum heatsink (250 mm×250 mm×6 mm) attached.

Holding Brake Specifications

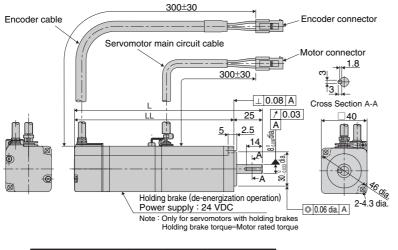
Servomotor Model : SJME-		01	02	04	08	Description								
Rated Voltage			24 VDC	2±10%		-								
Holding Brake Moment of Inertia*	kg⋅m²×10-4	0.0075 0.064		0.0075 0.064		0.064		0.064		-				
Capacity	W	6	6.9		6.9		6.9		6 6.9		6 6.9 7.		7.7	-
Min. Holding Torque (Static Friction Torque)	N∙m	0.318	0.318 1.27		1.27		1.27		2.39	Torque against an external force to hold the shaft				
Coil Resistance	Ω (at 20°C)	96	8	3	75	Resistance of the built-in coil in the holding brake								
Rated Current	A (at 20°C)	0.25	0.29		0.29		0.29		0.29		0.32	Current that flows when the holding brake is released		
Holding Brake Release Time	ms	80 max.		80 max.		-								
Rise Time for Holding Torque ms		100 max.				-								

*: To obtain the moment of inertia of a motor with a holding brake, add the holding brake moment of inertia to the rotor moment of inertia. The rated power rate and rated angular acceleration of the motor will change according to the motor moment of inertia.


Notes : 1 The holding brake is only used to hold the load and cannot be used to stop the servomotor. 2 Do not apply the holding brake when the servo is on. Failure to observe this caution may cause an overload in the SERVOPACK or a decrease in the

Speed / Torque Characteristics

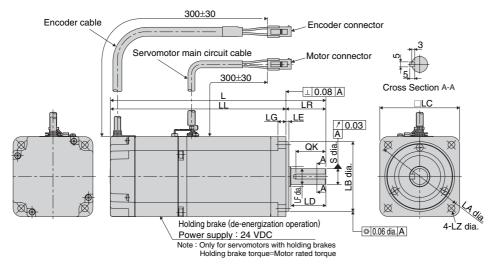
brake life.


How to Read a Gragh of Speed and Torque Characteristics

SJME-04A The output torque will decrease if the speed exceeds the rated speed.

Dimensions Units : mm

• SJME-01A (100 W)



Туре	L	LL	Approx. Mass kg		
SJME-01AMB41	119	94	0.5		
SJME-01AMB4C	164	139	0.7		

I	Motor Connector Specifications									
	Plug: 5559-06P-210 Terminal (No.1 to 3,5,6): 5558T (chained) or 5558TL (detached) Grounding Pin (No.4): 30490-2002 (chained) or 30490-2012 (detached) (Manufacture: Molex Japan Co., Ltd)									
		Witho	out brake		Wit	h brake				
	1	Phase U	Red		Phase U	Red	1			
	2	Phase V	White		Phase V	White				
	3	Phase W	Blue		Phase W	Blue	1			
	4	FG	Green/Yellow		FG	Green/Yellow	-			
	5	-	-		Brake	Red				
	6	-	-		Brake	Black				
	121	oder Con	5 Tormir	55§	59-12P-21 : 5558T2 or 5558T	0				
	1	PG	i5 V		Red					

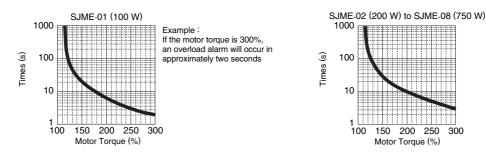
1	PG5 V	Red				
2	PG0 V (GND)	Black				
3	Phase A+	Blue				
4	Phase A–	Blue/White				
5	Phase B+	Yellow				
6	Phase B–	Yellow/White				
7	Phase /Z	Purple				
8	Phase U	Gray				
9	Phase V	Green				
10	Phase W	Orange				
11	-	-				
12	FG	Shield				
	•					

• SJME-02A, 04A, 08A (200 W, 400 W, 750 W)

Туре	L	LL	LR	LG	LE	S	LB	LC	LD	LF	LA	LZ	QK	Approx. Mass kg
SJME-02AMB41	125.5	95.5						60		_	- 70	5.5	20	0.9
SJME-02AMB4C	165.5	135.5	30	6	3	14_0.011	50 _{-0.039}							1.5
SJME-04AMB41	148.5	118.5	30	0						10	5.5	20	1.3	
SJME-04AMB4C	188.5	158.5							_					1.9
SJME-08AMB41	173	133	40	•	3	16 ⁰ -0.011	70_0.046	80	35	20	90	7	30	2.6
SJME-08AMB4C	216	176	40	8										3.5

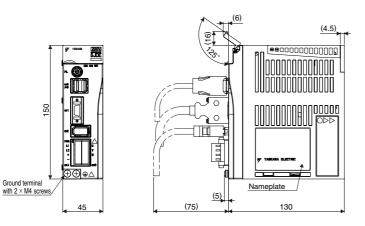
Specifications

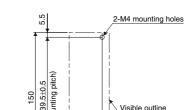
	SERVOPACK Mod	lel SJDE-	01ANA	02ANA	04ANA	08ANA		
	Applicable Servomotor C		0.1	0.2	0.4	0.75		
	Continuous Output Curre	nt Arms	0.84	1.1	2	3.7		
S	Instantaneous Max. Outp	ut Current Arms	2.5	3.3	6	11.1		
tion		Voltage	Single-phase 200 t	to 230 VAC, +10 to -	-15%			
fica	Input Power Supply	Frequency	50/60 Hz ± 5%					
ecil	(for main circuit and control circuit)	Voltage Frequency Capacity at Rated Output kVA	0.40	0.75	1.2	2.2		
Basic Specifications	Power Loss at Rated Out	put W	14	16	24	35		
asic	Input Control Method	·	Capacitor-input type, sir	ngle-phase full-wave rectif	ication with resistance to	prevent inrush currents.		
ä	Output Control Method		PWM control, sine	wave power driven s	system			
	Allowable Load Moment	of Inertia*1 kgm ²	0.5×10 ⁻⁴	3×10-4	5×10-4	10×10-4		
	Leakage Current		3.5 mA max.	•		•		
			Activated when the	e power is off, a serve	o is OFF, or an alarn	n occurs.		
	Dynamic Brake(DB)		(Released after the	e motor stops; Applie	d if the power supply	y is turned off)		
	Communications for Mair	ntenance	JunmaWin (Modific	cation/initialization of	parameters, JOG of	peratoin, etc)		
suc	Regenerative Processing		If the regenerative	energy is too large, i	mount a regenerative	e unit.		
lotic	Emergency Stop		Emergency Stop (E-STP)					
Built-in Functions	Overtravel(OT) Preventio	'n	Forward run prohib	oited (P-OT), reverse	run prohibited (N-O	Т)		
t-in	Display		Four LED indicators : (PWR, RDY, COM, ALM)					
Buil	Monitor		Power supply status	s monitor, servo ON/0	OFF monitor, MECH	ATROLINK monitor		
	Feedback		Incremental encode	er (8192 pulses/rev)				
	Reference Resolution Se	tting (Electronic Gear)	0.01 ≦ B/A ≦ 100					
	Ductostica		Speed error, overload*2, encoder error, voltage error, overcurrent, built-in					
	Protection		cooling fan stop, system error, ground fault*3.					
		Communications Protocol	MECHATROLINK-	I				
	CHATROLINK	Station Address	41H to 5FH					
	nmunications	Transmission Speed	10 Mbps					
Cor	nmunications	Transmission Cycle	1 ms, 1.5 ms, 2 ms	s, 3 ms, 4 ms				
		Data Length	17 bytes or 32 bytes					
Cor	nmand Method	Performance	MECHATROLINK-	I communications				
001		Felloimance	MECHATROLINK-II comm	ands (For motion, data settin	g/reference, monitor, adjustm	ent, and other commands)		
Soc	uence Input Signals	Fixed Inputs	5 points (Externa	I latch signal, hom	ning deceleration s	ignal, forward rur		
Seu	dence input olynais		prohibited signal, re	everse run prohibited	d signal, and emerge	ency stop signal)		
Seq	uence Output Signals	Fixed Outputs	2 points (Servo ala	rm and holding brak	e)			
Ope	erating Temperature / Oper	ating Humidity	0°C to + 55°C / 90%	6 RH or less (no con	densation)			
Sto	rage Temperature / Storage	e Humidity	-20°C to + 70°C / 90	0% RH or less (no co	ondensation)			
Am	pient Conditions		Free from corrosive gases, Free from dust and iron particles, Free from water droplets or machine oi					
Altit	ude		1000 m or below					
Vibr	ation Resistance / Shock F	Resistance	4.9 m/s ² / 19.6 m/s ²					
Ope	erating Conditions		Installation category (overvoltage category) : II, Pollution degree : 2, Protection class : IP1X (EN50178)					

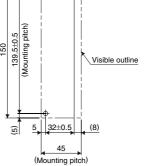

*1: Be sure to use the motor within the allowable load moment of inertia. The motor will become unstable if the load moment of inertia exceeds the allowable value.

*2 : The overlord characteristics are shown below. The motor torque in the graphs are shown in percentage for the rated torque. *3 The ground protection circuit is designed for ground fault inside the motor windings while the motor is running. Therefore, it may not protect the system under

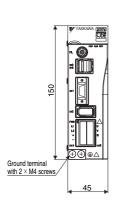
the following cases.

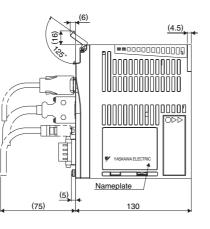

· A low-resistance ground fault occurs in the main circuit cable or in the connector of the cable for the servomotor.

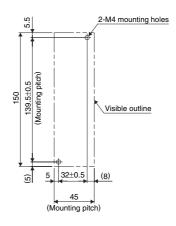

• The power supply is turned on during a ground fault. To make your system even safer, install a ground fault interrupter for overloads and shortcircuits, or install a molded-case circuit breaker combined with a ground fault interrupter for ground faults.


Dimensions Units : mm

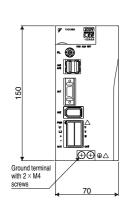
• SJDE-01, 02 (100 W, 200 W)

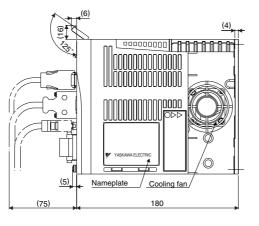



Mounting Hole Diagram

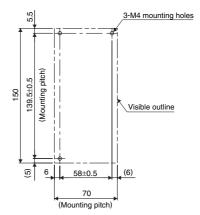

• SJDE-04 (400 W)

150

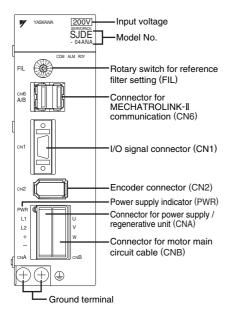




Mounting Hole Diagram



• SJDE-08 (750 W)



Mounting Hole Diagram

Part Names and Functions

Rotary Switch (FIL)

If the machine vibrates when starting or stopping, set a larger value.

The factory setting is 0. Not necessary to change this value unless machine vibrates.

Setting	Rise Time*1	Positioning Settling Time* ²	Description
0	45 ms	100 to 200 ms	Small filter time
1	50 ms	110 to 220 ms	constant
2	60 ms	130 to 260 ms	(short positioning time)
3	65 ms	150 to 300 ms	
4	70 ms	170 to 340 ms	Large filter time constant
5	80 ms	200 to 400 ms	(little vibration
6	85 ms	250 to 500 ms	with a long
7	170 ms	500 to 1000 ms	★positioning time)
8 to F	Do not set 8 thr		

*1 : Required time to reach reference speed.

*2: The value depends on conditions such as the amplitude of accel/decel reference, the rigidity of the machine, and the reference resolution.

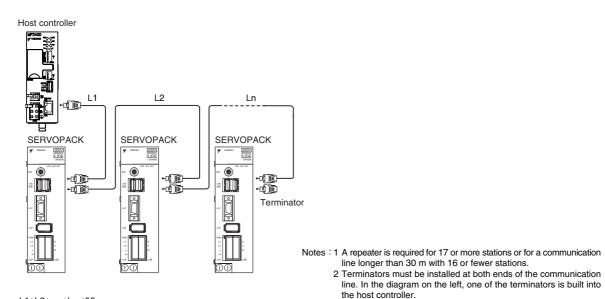
1	L1	Power supply
2	L2	input terminals
3	+	Regenerative unit
4	-	connection terminals

Connector (CNA)

Din No Symbol Signal Name

Connector (CNB)

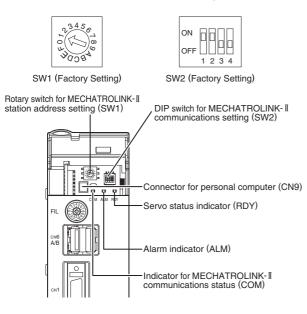
Pin No.	Symbol	Signal Name
1	U	Phase U
2	V	Phase V
3	W	Phase W
4	-	Not used


Connector (CN2)

Pir	n No.	Symbol	Signal Name
	4	PG5 V	PG power
	1	FG5 V	supply+5 V
	2	PG0 V	PG power
	2	FGUV	supply 0 V
	3	A+	Phase A+
	4	A–	Phase A-
	5	B+	Phase B+
	6	B-	Phase B-
	7	/ Z	Phase / Z
	8	U	Phase U
	9	V	Phase V
	10	W	Phase W

Connector (CN1)

Pin No.	I/O	Symbol	Signal Name
1	Input	/EXT1	External latch
2	Input	/DEC	Zero point return
3	Input	P-OT	Reverse run prohibited
4	Input	N-OT	Forward run prohibited
5	Input	+24VIN	External input power supply
6	Input	E-STP	Emergency stop
7	Output	SG-COM	Output signal ground
8	-	-	-
9	-	-	-
10	-	-	-
11	-	-	-
12	Output	ALM	Servo alarm
13	Output	/BK	Brake
14	_	-	_
Shell	_	-	FG


MECHATROLINK-II Connections

 $L1+L2+\cdots+Ln \leq 50 m$ Cable length between stations: 0.5 m min.

MECHATROLINK-I Communications Settings

The SW1 and SW2 switches set the MECHATROLINK-II communications settings. Changed settings are valid when the power is turned OFF and then ON again.

• DIP Switch (SW2)

		•	•	
SW2	Name	Setting	Description	Factory Setting
1 Reserved		OFF	Do not set	011
1	neserveu	ON	Fixed	ON
2	Transmission hutes	OFF	17 bytes	011
2	Transmission bytes	Transmission bytes ON 32 bytes	32 bytes	ON
3	Station address	OFF	Station address=40H+SW1	OFF
3	Station address	ON	Station address=50H+SW1	UFF
	Selection of filter OF	OFF	Sets by using the FIL rotary	
4		Selection of filter	switch(invalid setting by Pn00A)	OFF
4	setting method	ON	Sets by Pn00A(invalid setting	UFF
			by using the FIL rotary switch)	

Number of Stations

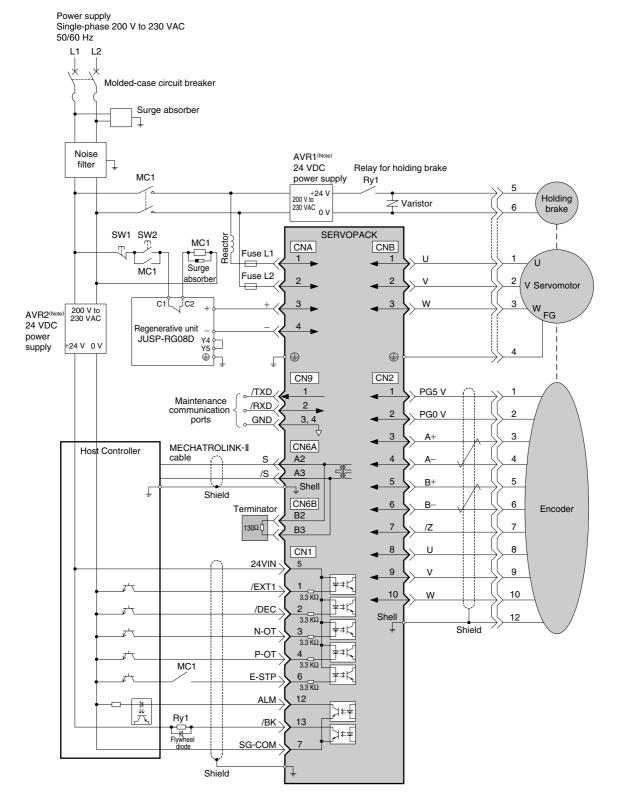
The number of stations that can be connected depends on the transmission cycle being used. The transmission cycle is automatically set by the controller.

Transmission	Transmission Cycle				
Bytes	1.0 ms	1.5 ms	2.0 ms	3.0 ms	4.0 ms
17 bytes	14 stations	23 stations	30 stations	30 stations	30 stations
32 bytes	8 stations	14 stations	23 stations	30 stations	30 stations

If connecting 17 stations or more, use a repeater. The table indicates the maximum number of stations that can be connected by MECHATROLINK communications. The actual number of stations may differ depending on the Machine Controller. Refer to the relevant Machine Controller's manual.

MECHATROLINK-I Communications Status Indicators

The COM LED(green) on the front of SERVOPACK is lit when MECHATROLINK- ${\rm I\!I}$ communications with the host controller is established.


When Operating Normally

Status LEDs	SERVOPACK Status
COM ALM RDY ↓ 2 seconds after the power turns ON COM ALM RDY	Standby for establishment of communicaions
COM ALM RDY	MECHATROLINK- II communications busy
COM ALM RDY	Servo On status (Power is being supplied to the servomotor.)

• When an Error Occurs

Status LEDs	SERVOPACK Status	Alarm Confirmation
COM ALM RDY	Alarm	Check the alarm via MECHATROLINK-II communications with the host controller.
COM ALM RDY	Alarm	Check the alarm with a PC running JunmaWin connected to the SERVOPACK.
COM ALM RDY	Warning	Check the warning via MECHATROLINK-II communications with the host controller.

Connection Diagram

Manufacturers of Components

AVR1	24 VDC power supply	SW1	Emergency stop switch
AVRI	for a holding brake	SW2	Power on switch
AVR2 24 VDC power supply		MC1	Magnetic contactor
AVRZ	for I/O signals	Ry1	Relay for holding brake

Surge absorber	Okaya Electric Industries Co., Ltd. (Spark killer)	CRE-50500
Flywheel diode	Toshiba Corp.	1NH42
Relay for holding brake	Omron Corp.	MY series
Varistor	Nippon Chemi-Con Corp.	TNR7V121K

Note : Prepare separate 24 VDC power supplies for a holding brake and I/O signals.

Input Signals

External Latch Signal Input

This input signal is used to obtain current position data during a positioning operation.

Signal Na	Signal Name Signal			Function	
External L	atch	/EXT1	ON(low level)	The external signal is ON.	
Signal In	put	/EXTT	OFF(high level)	The external signal is OFF.	

Homing Deceleration Signal Input

This input signal is a deceleration signal for home position return.

Signal Name	Signal	Function		
Homing Deceleration	/DEC	ON(low level)	The limit switch turns ON.	
Signal Input		OFF(high level)	The limit switch turns OFF.	

Forward/Reverse Run Prohibited Inputs (Overtravel Inputs)

Connect these signals to limit switches to forcibly stop the servomotor when the machine movable part travels beyond the allowable motion range. The servomotor will decelerate to a stop, and then the zero clamp is performed. The maximum torque during deceleration to a stop will be the servomotor maximum torque.

Note : For forward/reverse run prohibited inputs, the SERVOPACK processing for stopping is executed by the software. As the safety specifications of some applications may not satisfy local safety requirements, add external safety circuits as required.

Signal Name	Signal	Function		
Forward Run		ON(low level)	Forward run allowed (normal status)	
Prohibited	P-OT		Forward run prohibited	
Input		OFF(high level)	(reverse run allowed)	
Reverse Run		ON(low level)	Reverse run allowed (normal status)	
Prohibited	N-OT		Reverse run prohibited	
Input		OFF(high level)	(forward run allowed)	

<Enable/Disable Settings>

Parar	neter	Descriptions
	n.2	Forward run permitted when P-OT signal
Pn.50A	n.2	is ON (low level). (Factory setting)
FII.50A		P-OT signal disabled. Forward run always
	n.8□□□	permitted.
	<u> </u>	Reverse run permitted when N-OT signal
Pn.50B	n.∐4∐∐	is ON (low level). (Factory setting)
F11.50B		N-OT signal disabled. Reverse run always
	n.∐8∐∐	permitted

Emergency Stop Signal Input

When the signal turns OFF while the servomotor is rotating, the servomotor will be stopped by the dynamic brake.

Signal Name	Signal	Function		
Emergency Stop	E-STP	ON(low level)	Released the emergency stop	
Signal Input	E-SIP	OFF(high level)	Emergency stop(Forced servo OFF)	

<Enable/Disable Settings>

Parameter		Descriptions		
	n.□4□□	Emergency stop when E-STP signal is OFF (high level). (Factory setting)		
Pn.515		E-STP signal disabled. Emergency stop		
	n.□8□□	always disabled.		

Servo Alarm Output

This signal is output when the SERVOPACK detects an error.

Si	gnal Name	Signal	Function
Se	ervo Alarm	ALM	Normal status when ON(close)
	Output	ALIVI	Alarm output when OFF(open)

 Note : Open colletor outputs are used for output signals.
 At alarm occurrence, an alarm code is output to the host controller through MECHATROLINK-II transmission.Take care that the SERVOPACK power supply is not turned OFF when the alarm output signal turns ON.

Configure the system so that the SERVOPACK power supply is turned OFF by the contact signal between C1 and C2 of the regenerative unit or the contact signal of the thermostat switch for the external resistor. The power supply must be turned OFF and the emergency stop input signal must be open when using the system emergency stop.

Brake Interlock Output

This signal turns ON when the servo is ON and turns OFF when the servo is OFF. This is used to control the holding brake.

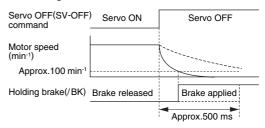

Signal Name	Signal	Function
Brake Interlock	/BK	Releases the brake when ON (close)
Output	/BR	Applies the brake when OFF (open)

Image: BK Signal Timing

①When the servo is OFF while the servomotor is stopped.

Servo OFF(SV-OFF command) Servo ON	Se	ervo OFF
Holding brake(/BK)	Brake released	Br	ake applied
Motor power	Motor power ON		Motor power OFF
	A ===	-	
	prox.130	ms	

When the servo is OFF while the servomotor is running.

/BK signal turns ON when either of the following is satisfied while the servomotor is rotating.

 $\cdot The servomotor speed decreases to 100 min^1 or less after the servo is OFF.$

.500 ms elapses after the servo is OFF.

Power Loss

Main Circuit	SERVOPACK		Output Current (Effective Value)	Main Circuit Power Loss	Control Circuit Power Loss	Total Power Loss
Power Supply	Model	Capacity	А	W	W	W
	SJDE-01ANA	100 W	0.84	6		15
Single-phase	SJDE-02ANA	200 W	1.1	8	0	17
200 V	SJDE-04ANA	400 W	2.0	16	9	25
	SJDE-08ANA	750 W	3.7	27		36

Note : Values obtained with the servomotor rated output.

Main Circuit and Signal Cables

• Cable Types

		Allowable
Symbol	Name	Conductor
		Temperature
PVC	Standard vinyl cable	—
IV	600 V vinyl cable	60℃
HIV	Heat-resistant vinyl cable	75℃

- Cable sizes are selected for three cables per bundle at 40°C ambient temperature with the rated current.
- Use cables with a minimum withstand voltage of 600 V for main circuits.
- If cables are bundled in hard vinyl conduits or metal conduits, consider the derating of the allowable current.
- Use heat-resistant cables under high ambient temperatures in a panel where standard vinyl cables will rapidly deteriorate.
- Do not use cables under continuous regenerative state.

• Cable Size and Allowable Current

The following table provides cable sizes and allowable currents for three cables per bundle. Use cables at a current equal to or lower than the allowable current shown in the table.

600-V Heat-resistant Vinyl Cables (HIV)

AWG Size	Nominal Cross Section	Configuration wires/mm	Conductive Resistance		able Curr nt Temper	
Size	mm ²	wires/min	Ω/km	30℃	40℃	50℃
20	0.5	19/0.18	39.5	6.6	5.6	4.5
-	0.75	30/0.18	26.0	8.8	7.0	5.5
18	0.9	37/0.18	24.4	9.0	7.7	6.0
16	1.25	50/0.18	15.6	12.0	11.0	8.5
14	2.0	7/0.6	9.53	23	20	16

Note : The values in the table are only for reference.

• Cable Type

Wire Size	Terminal Screw Size	Tightening Torque
HIV2.0 mm ² min.	M4	1.2 to 1.4 N · m

<Signal Line Cable Sizes>

The following table specifies the appropriate cables for the CN1 and CN2 connectors on the SERVOPACK.

Connector Name and S	Connector Name and Symbol		Specification
		Cable	Use twisted-pair cables or shielded twisted-pair cables.
1/O Signal Connector	CN1	Maximum cable length	3 m
I/O Signal Connector	CINT	Applicable cable	AWG24 (0.2 mm ²), AWG26 (0.12 mm ²), AWG28 (0.08 mm ²)
		Finished cable dimension	8 mm dia. max.
		Cable	Use the cables specified by Yaskawa or use shielded twisted-pair cables.
En en deu Oinnel		Maximum cable length	20 m
Encoder Signal	CN2	Anniisekie eskie	AWG22 (0.33 mm ²), AWG26 (0.12 mm ²)
Connector		Applicable cable	Use AWG22 for the encoder power supply and AWG26 for signal lines.
		Finished cable dimension	9 mm dia. max.

 Power Supply Input Terminals (L1, L2), Motor Connection Terminals (U, V, W), and Regenerative Unit Connection Terminals (+, -)

Capacity	SERVOPACK	Terminal Symbol				
W	Туре	L1, L2	U, V, W,	+, -		
100	SJDE-01ANA	HIV1.25 mm ²	HIV1.25 mm ²	HIV1.25 mm ²		
200	SJDE-02ANA	HIVI.25 mm ²		_		
400	SJDE-04ANA	1111/0.0 mm ²	Wiring length:	Wiring length:		
750	SJDE-08ANA	HIV2.0 mm ²	20 m max.	0.5 m max.		

Note : Connectors are used for all wiring.

Wiring Precautions

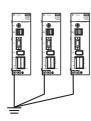
- Make sure to securely ground the SERVOPACK and servomotor. Wiring must be performed by experts in electrical work.
- Do not run the power and signal lines together in the same duct, or do not bundle them together. The distance between a power line (such as power supply lines or servomotor cables) and signal lines must be at least 30 cm.
- If the servomotor is used to drive a vertical axis, take safety measures to prevent the workpiece from falling down when an alarm occurs. Failure to observe this precaution may result in injury or damage to the equipment caused by fallen workpieces.

Main Circuit Wiring Precautions

- For SJDE SERVOPACKs, use a power supply capacity of 5,000 Arms or less (230 Vrms max.).
- Use UL-approved fuses or circuit breakers. Wiring should meet the National Electrical Code (NEC) or an equivalent.
- Use 75°C heat-resistant copper cables or an equivalent.

Cable Precautions

- For wiring, use the specified cables. The wiring distance should be as short as possible.
- Do not bend exessively or apply tension to cables. The conductor of a signal cable is very thin (0.08 to 0.12 mm²), so handle the cables carefully.


Protection of Power-supply Lines

• Use a molded-case circuit breaker and fuse to protect the power supply line. The SJDE SERVOPACK is connected directly to a commercial power supply without a transformer, so always use a circuit breaker and fuse to protect the SERVOPACK from accidents.

Grounding Precautions

To ground a SERVOPACK, follow these conditions.

- Use as thick a cable as possible (HIV2.0 mm² min.) for grounding.
- A ground resistance of 100 Ω or less is recommended.
- Use a single point ground as shown in the figure.

Servomotor

Precautions

The service life of the servomotor will be shortened or unexpected problems will occur if the servomotor is installed incorrectly or in an inappropriate location. Always observe the precautions in this section when installing a servomotor.

- If the junction cables are connected to the motor, be sure to connect the servomotor's main circuit cable before connecting the encoder cable. If the encoder cable is connected first, the encoder may become damaged because of the voltage differences between the ground and the frame.
- If using cables that are not made by Yaskawa, ensure that connector pins and cables are correctly configured.

Flange

Through shaft section

This refers to the gap where the shaft protrudes from the

end of the motor.

Shaft

- Make sure there is no foreign matter (such as dust and metal chips) in the connector before connecting.
- When handling a servomotor with its cables connected, hold the servomotor body. Otherwise the connectors and cables will be damaged.

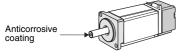
Installation Conditions

Item Conditions	Description
Operating temperature	0 to +40°C without freezing
Operating humidity	20 to 80%RH with no condensation
	Indoors
Installation sites	Free from corrosive or explosive gases
Installation sites	Well-ventilated and free from dust and moisture
	Facilitates inspection and cleaning
	If the power cable is disconnected, store the motor under these conditions.
Storage conditions	Temperature : −20 to +60°C without freezing
	Humidity : 20 \sim 80%RH with no condensation
Altitude	1000 m or below above sea level

Note : Do not directly connect the servomotor to a commercial power line. This will damage the servomotor.

Waterproof Specifications

The protective structure of the servomotors is designed with an IP55 rating.

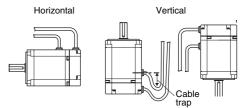

- The servomotor can be used in a location that is subject to water drops, except for the connector and the section where the shaft passes through.
- Do not use the servomotor in a location that is subject to oil mist.

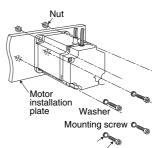
Installation Direction

- The motor can be installed horizontally or vertically. If the motor is mounted vertically, provide a cable trap so that water drops do not enter the motor. If the motor is installed with the axis pointing up, take preventive measures so that oil does not splash on the motor from other parts of the machine such as the gearbox.
- Do not bend or pull excessively any cables, the lead openings, and the junctions of the cables. The cores in the encoder cable and the brake signal line in the main circuit cable are only 0.2 mm² or 0.3 mm². Be sure to protect them from stress.

Installation Method

• The end of the motor shaft is coated with an anticorrosive coating. Thoroughly remove the coating prior to installation, or it will not be possible to couple the motor to the mechanical system.


<Precautions>

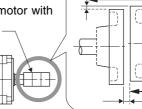

- Use the mounting holes (two for 100-W models and four for 200- to 750-W models) on the motor installation surface to secure the motor.
- Do not apply shock directly to the output shaft or encoder when mounting the motor, because the servomotor shaft is directly coupled to the encoder. The encoder may be damaged by the shock.

Direction of Servomotor Rotation

The forward rotation of the servomotor is counterclockwise when viewed from the load.

Bending radius R=15 mm

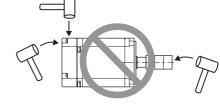
The motor main circuit cable, encoder cable, and junction cable cannot be used for applications in which the cables are moved, twisted, or rotated to a small bending radius. The cable bending radius in the center of the cable must be of 15 mm or larger. If the cables need to be bent, contact your Yaskawa representative.


Coupling to the Machine

Observe the following precautions when coupling the servomotor with the drive axis of the machine. $$_{\rm Coupling}__{\rm Coupling}$$

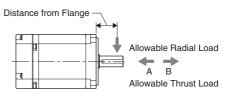
- Align the shaft of the servomotor with the shaft of the equipment, and then couple the shafts.
- Make sure that the motor and the machine are accurately aligned.Failure to observe this caution may result in damage to the motor axis or deterioration of the service life of the servomotor

by an eccentric load. Keep the eccentric load as small as possible.

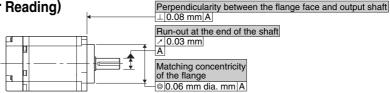

- A metal plate-spring coupling with high torsion rigidity designed for servomotors is recommended to maintain the response characteristics and durability of the servomotor.
- When attaching the coupling to the shaft of the servomotor, do not hammer the axis or near the encoder. Such shocks and vibrations may cause the encoder to malfunction.

Alignment Accuracy

Measure this distance at four different positions on the circumference. The difference between the maximum and minimum measurements must be 0.03 mm or less.


Note:When measuring the difference, turn the motor and the coupling together.

Allowable Loads


Design the mechanical system so that, during operation, the thrust and radial loads applied to the servomotor shaft do not exceed the range shown in the table below.

Servomotor Model	Allowable Radial Load	Allowable Thrust Load (Direction A or B)	Distance from
	М	N	Flange mm
SJME-01A	78	54	20
SJME-02A	245	74	25
SJME-04A	245	74	25
SJME-08A	392	147	35

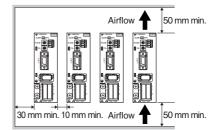
Mechanical Tolerance TIR (Total Indicator Reading)

The diagram on the right shows tolerances for the servomotor's output shaft and installation area.

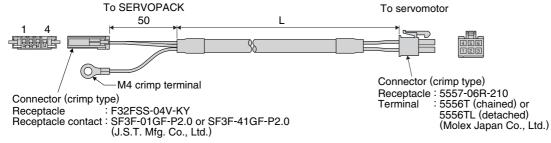
SERVOPACK

Mounting Conditions

Installation Site	Precautions
	The ambient temperature around the SERVOPACK must be 55°C or less. Design the control
In a control panel	panel size, unit layout, and cooling method accordingly.
	Note : The maximum ambient temperature for long-term reliability is $45^\circ C$
Need a location with	The ambient temperature around the SERVOPACK must be $55^\circ C$ or less. Minimize the heat
Near a heating unit	radiating from the heating unit as well as any temperature rise caused by natural convection.
Near a source of vibration	Install a vibration isolator beneath the SERVOPACK to eliminate vibrations from the machine.
	Take appropriate action to avoid corrosive gases. Corrosive gases do not have an immediate
At a site where corrosive gasses might	effect on the SERVOPACK but will eventually cause the electronic components, relays, and
enter the control panel	magnetic contactors to malfunction.
	Take appropriate action to avoid any contaminants such as dust, iron particles, water drops, or
At a contaminated site	oil mist. Contamination will cause the electronic components to immediate malfunction.


Mounting Method

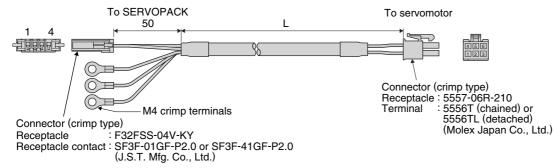
 Mount the SERVOPACK vertically, so the bottom is perpendicular to the wall. The SERVOPACK must be mounted in the specified direction because it contains a built-in fan for cooling. Fix the mounting plate securely with the two M4 screws in the mounting holes.


Spacing

To ensure effective cooling, sufficient space must be kept between the individual SERVOPACK units and also between the SERVOPACK units and the panel wall as shown in the figure.

Motor Type	Model Cable Length (L)		Contact
	JZSP-CHM000-03	3 m	
	JZSP-CHM000-05	5 m	
Without brakes	JZSP-CHM000-10	10 m	
	JZSP-CHM000-15	15 m	
	JZSP-CHM000-20	20 m	Vaakawa Laasl Office
	JZSP-CHM030-03	3 m	Yaskawa Local Office
	JZSP-CHM030-05	5 m	
With brakes	JZSP-CHM030-10	10 m	
	JZSP-CHM030-15	15 m	
	JZSP-CHM030-20	20 m	

JZSP-CHM000-


<Wiring Specifications>

Connecto	r for SERVO	PACK	Connector for Servomotor		
Pin No.	Signal	Cable Color	Pin No.	Signal	Cable Color
1	Phase U	Red	1	Phase U	Red
2	Phase V	White	2	Phase V	White
3	Phase W	Blue	3	Phase W	Blue
4	-	-	4	FG	Green/Yellow
			5	-	-
Crimp terminal	FG*	Green/Yellow	6	-	-

Crimp terminal

*: Connect the FG pin to the grounding terminal of the SERVOPACK.

● JZSP-CHM030-□□ (For Motors with Brakes)

<Wiring Specifications>

Connec	tor for SERVO	OPACK	Connector for Servomotor		
Pin No.	Signal	Cable Color	Pin No.	Signal	Cable Color
1	Phase U	Red	1	Phase U	Red
2	Phase V	White	2	Phase V	White
3	Phase W	Blue	3	Phase W	Blue
4	-	_	4	FG	Green/Yellow
			5	Holding Brake	Black
Crimp terminal	FG*1	Green/Yellow	6	Holding Brake	Black
Crimp terminal	Holding Brake*2	Black			

Crimp terminal Holding Brake*2 Black

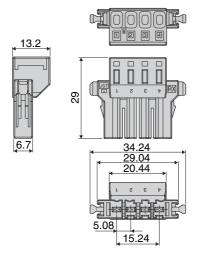
*1: Connect the FG pin to the grounding terminal of the SERVOPACK.

*2: No polarity for holding brake.

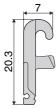
Servomotor Main Circuit Cable Connector Kits for Servomotor

Туре	Model	Part No.		Manufacturer	Contact	
O. S. T. S.		Receptacle : 5557-06R-210	1		Yaskawa Local Office	
Crimp Type	JZSP-CHM9-1	Terminal : 5556T (chained) or	7	Molex Japan Co.,Ltd.		
(For servomotor		5556TL (detached)	/			
w/wo brake)	57027-5000	Crimping tool : 57027-5000	-	Molex Japan Co.,Ltd.	Yaskawa Local Office	

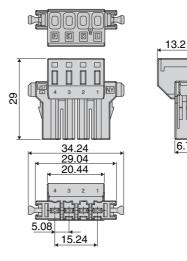
Note : A crimping tool is ordered separately.

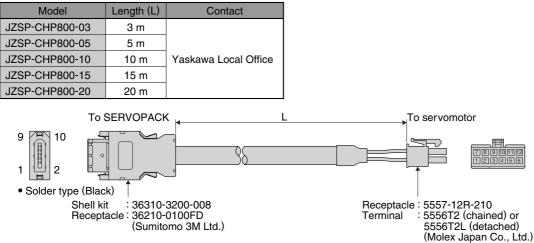


Servomotor Main Circuit Cable Connector Kits for SERVOPACK CNB Power Supply/Regenerative Unit Connector Kits for SERVOPACK CNA


Туре		Model	Part No.	Qty	Manufacture	Contact
Main Circuit Cable Connector Kits for	Spring Type	JZSP-CHM9-2	Connector : 04JFAT-SAYGF-N Tool (lever for wiring) : J-FAT-OT		J.S.T.Mfg. Co.,Ltd.	Yaskawa Local Office
CNB (For servomotor w/wo brake)	Crimp Type	F32FSS-04V-KY SF3F-41GF-P2.0 YRF-880	Receptacle : F32FSS-04V-KY Receptacle contact : SF3F-41GF-P2.0 Crimping tool : YRF-880	1 4 -	J.S.T.Mfg. Co.,Ltd.	Yaskawa Local Office
Power Supply/ Regenerative Unit Connector Kits for CNA	Spring Type	JZSP-CHG9-1	Connector : 04JFAT-SBXGF-N Tool (lever for wiring) : J-FAT-OT		J.S.T.Mfg. Co.,Ltd.	Yaskawa Local Office

Note : A crimping tool is ordered separately.

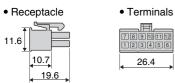

CNA Connector Model : 04JFAT-SBXGF-N


Wiring Tool (Lever for Wiring) Model : J-FAT-OT

CNB Connector Model : 04JFAT-SAYGF-N

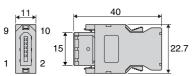
Encoder Cables with Connectors (Junction Cable)

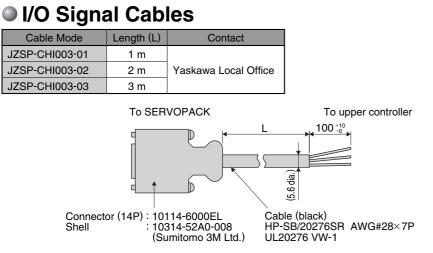
<Wiring Specifications>


Pin No.	Signal	Wire Color		Pin No.	Signal	Wire Color
1	PG5 V	Red		1	PG5 V	Red
2	PG0 V(GND)	Black		2	PG0 V(GND)	Black
3	Phase A+	Blue		3	Phase A+	Blue
4	Phase A-	Blue/White		4	Phase A-	Blue/White
5	Phase B+	Yellow		5	Phase B+	Yellow
6	Phase B-	Yellow/White		6	Phase B-	Yellow/White
7	Phase /Z	Purple		7	Phase /Z	Purple
8	Phase U	Gray		8	Phase U	Gray
9	Phase V	Green		9	Phase V	Green
10	Phase W	Orange		10	Phase W	Orange
Shell	—	Shield wire		11	_	_
			Shielded wire	12	FG	Shield

Encoder Cable Connector Kits

• For Servomotor Encoder Plug


Туре	Model	Part No.		Part No.		Manufacturer	Contact
		Receptacle : 5557-12R-210	1				
Crimp Type	JZSP-CHP9-1	Terminal : 5556T2 (chained) or	10	Molex Japan Co., Ltd.	Yaskawa Local Office		
		5556T2L (detached)	12				
	57026-5000	Crimping tool : 57026-5000		Molex Japan Co., Ltd.	Yaskawa Local Office		


Note : A crimping tool is ordered separately.

• For SERVOPACK CN2

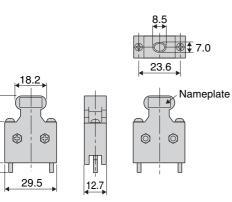
Туре	Model	Part	No.	Manufacturer	Contact	
Soldered Type	JZSP-CHP9-2	Shell kit	: 36310-3200-008	Sumitomo 3M Ltd.	Yaskawa Local Office	
(black)	JZ3F-CHF9-2	Receptacle : 36210-0100FD			Taskawa Local Office	
Soldered Type	JZSP-CHP9-3	Plug and cable cover	r:54599-1019	Molex Japan Co.,Ltd.	Yaskawa Local Office	
(gray)	JZ3F-CHF9-3	Plug connector	: 54593-1019	Molex Japan Co.,Llu.	Yaskawa Local Office	

<Wiring Specifications>

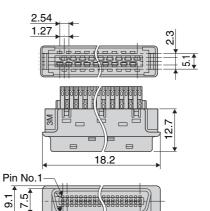
Pin	I/O	Code	Signal Nama	Lead	Dot	Mark	Pin	I/O	Code		Lead	Dot	Mark
No.	1/0	Code	Signal Name	Color	Number	Color	No.	1/0	Code	Signal Name	Color	Number	Color
1	Input	/EXT1	External latch	Orange		Black	9				Pink	4	Black
2	Input	/DEC	Homing deceleration			Red	10				PINK	1	Red
3	Input	N-OT	Reverse run prohibit	Light		Black	11				Oranga		Black
4	Input	P-OT	Forward run prohibit	gray	4	Red	12	Output	ALM	Servo alarm	Orange	2	Red
5	Input	+24VIN	External input power supply	White		Black	13	Output	/BK	Brake	Light	2	Black
6	Input	E-STP	Emergency stop	vvnite		Red	14				gray		Red
7	Output	SG-COM	Output signal ground	Vallaw		Black	Shell	-	_	FG	I	-	-
8				Yellow		Red							

I/O Signal Connector Kits

• For SERVOPACK CN1


Туре	Models	Part No.		Manufacturer	Contact	
Soldered type	JZSP-CHI9-1	Shell kit	: 10314-52A0-008	Sumitomo 3M Ltd.	Yaskawa Local Office	
Coldered type	0201 01110 1	Plug	: 10114-3000PE	Cumitomo ola Ela.	Tuskawa Ebbai Onioc	

Shell Kit


39.0

23.8

5.2

Plug

1.27

7.62 13.6

Pin No.2

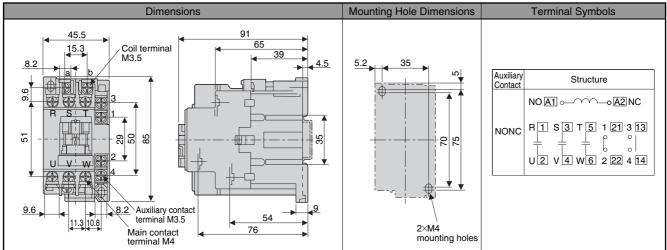
15

	,	-
	_	1
		- m
	2.9) 6.6)	19.3
Ħ	ର ର	
\square		



Units : mn

Magnetic Contactor

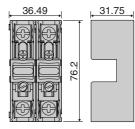

Model	Specifications	Manufacturer	Contact		
HI-11J	20 A	Vaakowa Controla Co. 1 td	Yaskawa Local Office		
HI-15J	35 A	Yaskawa Controls Co., Ltd.	raskawa Local Office		

• HI-11J

<u>।</u> ह बिबि

• HI-15J

External Fuse


• Fuse

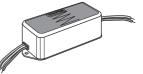
• 1 400									
Model	Rated Current	Rated Voltage	Fusing Time	Applicable SERVOPACKs	Manufacturer	Contact			
OKLK015.T	15 Arms	600 V	Within 2 s	SJDE-01 to 04	D1 to 04				
OKLK030.T	OKLK030.T 30 Arms		30 Arms 600 V		at 200% SJDE-08		Littelfuse Inc.	Yaskawa Local Office	
38.1	10.31								

• Fuse Block

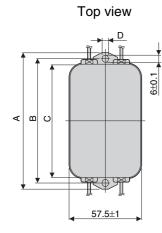
Model	Туре	Manufacturer	Contact
L60030M2SQ	Screw terminal, 2 poles		Vaakawa Laasi Offica
L60030M2C	Copper box lug, 2 poles	Littelfuse Inc.	Yaskawa Local Office

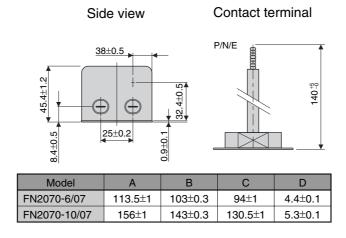
M4 screw for ground terminal

Regei	nerative Unit				
Model	JUSP-RG08D	Manufacturer	Contact	HEORERENTIVE UNIT JAEP-MODE comm	
Resistance	50 Ω				
Allowable regenerative energy	12 W				Namepla
Regenerative voltage	380 Vdc				
Regenerative current	8 Adc	Yaskawa	Yaskawa	بن س س 25, 6-dia. hole M4 screw for external	
Error detection	Disconnection of regenerative resistance, failure of regenerative transistor, or overvoltage	Electric Corporation	Local Office	Pecceserant ve uwr Juse Hodou Rome O Aler O Aler O	
Alarm output	NC contact (Open when an error is detected.) Contact specifications : 250 VAC, 1.5 A (inductive load)	-			
				(15.5) (15.5) (15.5) (15.5) (15.5) (15.5) (15.5)	130 r
				around	A


 \otimes

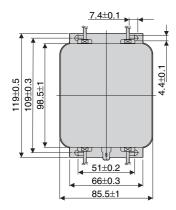
 \otimes

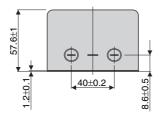

Approx. mass : 1.0 kg

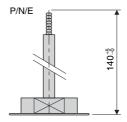

Noise Filter

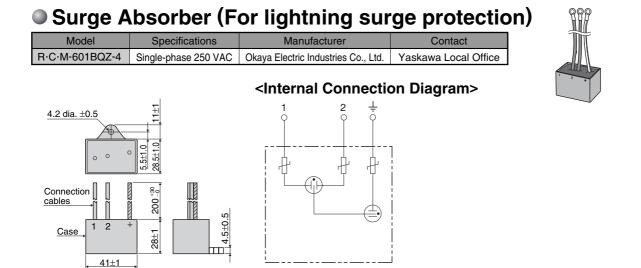
Model	Specifications	Manufacturer	Contact	
FN2070-6/07	Single-phase 250 VAC, 6 A			
FN2070-10/07	Single-phase 250 VAC, 10 A	Shaffner EMC, Inc.	Yaskawa Local Office	
FN2070-16/07	Single-phase 250 VAC, 16 A			

• FN2070-6/07, FN2070-10/07




• FN2070-16/07


Top view

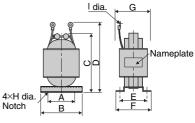

Side view

Contact terminal

AC Reactor

Model	Inductance (mH) Rated Current (A		Contact	
X5052	45.0	1.0		
X5053	20.0	2.0	Vashawa Laash Office	
X5054	5.0	3.0	Yaskawa Local Office	
X5056	2.0	5.0		

L	Ö(S.	5
	L		
E		2	7


H

6

Madal	Dimensions mm								Approx. Mass	
Model	A	В	С	D	Е	F	G	Н	I	kg
X5052	35	52	80	95	30	40	45	4	4.3	0.4
X5053	35	52	90	105	35	45	50	4	4.3	0.6
X5054	35	52	80	95	30	40	45	4	4.5	0.4
X5056	35	52	80	95	30	40	45	4	4.3	0.4

Model	Applicable SERVOPACKs	Contact
JZSP-CHF08-1	SJDE-01 to 04	Vaakawa Laasi Offica
JZSP-CHF08-2	SJDE-08	Yaskawa Local Office

Personal Computer Support Software JunmaWin

JunmaWin is an engineering tool used to set up MECHATROLINK-II compatible JUNMA series AC servo drives. It can be downloaded from Yaskawa's technology and products website, http://www.e-mechatronics.com.

Functions of JunmaWin

Parameter Setting Sets parameters.

11	-		100	100	dirite .	E
1 100						
i has						
1.000						
1.000			- Contra 1	1.00	2	
10.0				1000		
				10.000		
-	-	-	- C	-	2	
100	100		-			
1.000					-	
						10
						-
						-
			1 1000	And a second sec	1 bee	1 Mar.

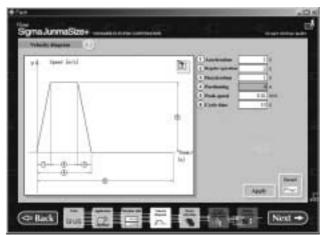
Alarm Display/Monitoring Monitors and displays SERVOPACK status.

A CE Taxab Ignities Inclusi No. Note II A CE Wate Increase	<u></u>
A PROVIDE A LOT AND A PROVIDE ADDRESS	
A PROVIDE A LOT AND A PROVIDE ADDRESS	
A PROVIDE A LOT AND A PROVIDE ADDRESS	
A PROVIDE A LOT AND A PROVIDE ADDRESS	
A PROVIDE A LOT AND A PROVIDE ADDRESS	
ID A COI Brooke Spectros	
CO Manual	
04 Normal	
66 Hontral	
TR: Doned	
OF Home	
US Nonixe	
00 Horse	
10 Housid	× ×

Setup and Trial Operation Supports trial operation and initial setting before operation.

ACC Descriptions ACC Descriptions Petter (C) Speed	
jan	(mail) [10]
Caretan	
Q secore	
and the second	
+0	<u> </u>

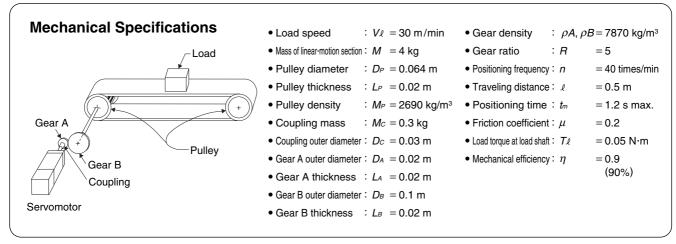
AC Servomotor Selection Program: SigmaJunmaSize+


SigmaJunmaSize+ is the software that can help you select the optimal servo drive for your system. It can be downloaded from Yaskawa's technology and products website, http://www.e-mechatronics.com.

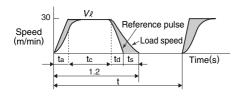
Features


- Obtain product updates.
- Select the optimal servomotor with the help of an interactive wizard.
- Refer to and reuse stored data.

Servomotor Selection Screen



Formulas for Selecting Servomotor Capacity


Matiana	Detetional Mation	Linear	Motion			
Motions	Rotational Motion	Horizontal Axis	Vertical Axis			
Mechanical Configuration	Servomotor	Servomotor $\mathcal{I}_{\mathcal{I}}_{\mathcal{I}}}}}}}}}}$	Counter MC MC MC MC MC MC MC MC			
	Vℓ : Load speed (m/min) Tℓ : Load torque (N·m)	 PB : Ball screw lead (m) M : Mass of linear-motion section (kg) MC : Mass of counterbalance (kg) 	 1/R : Gear ratio η : Mechanical efficiency <i>T_PM</i>: Servomotor maximum torque (N·m) 			
Speed Diagram		Speed Torque V_{I} Speed T_{D} For motion of vertical axis T_{L} T_{L} $T_$				
Travel Distance (m)	$S = \frac{Ve}{60} \cdot \frac{ta}{100}$	$\frac{+2tc+td}{2} \qquad \qquad \left(\text{Where } ta=td, S=\right)$				
Load axis speed (min-1)	Ne	$N\ell = \frac{V\ell}{P_B}$	$N\ell = \frac{V\ell}{P_B}$			
Motor Speed (min ⁻¹)		$N_M = N \cdot R$				
Load Torque at Motor Shaft (N·m)	$TL = \frac{T\ell}{R \cdot \eta}$	$TL = \frac{9.8 \times \mu \cdot M \cdot P_B}{2 \pi \cdot R \cdot \eta}$	$T_L = \frac{9.8 \times (M - M_C) P_B}{2 \pi \cdot R \cdot \eta}$			
Load Moment of Inertia at	JL = JL1 + JL2 + JL3					
Motor Shaft (kg·m²)			JL1 JL2 JL2 JL2			
Linear Motion	_	$J_{L1} = M \cdot \left(\frac{P_B}{2\pi R}\right)^2$	$J_{L1} = (M + M_C) \cdot \left(\frac{P_B}{2\pi R}\right)^2$			
Rotational Motion	•Solid cylinder • $L (m)$ • $- \downarrow D (m)$ <inertia for="" motor="" shaft=""> At gear input side $JL2 = JK$ At gear output side $JL3 = \frac{JK}{R^2}$</inertia>					
Running Power (W)	$Po = \frac{2\pi \cdot N_M \cdot T_L}{60}$					
Acceleration Power (W)		$P_a = \left(\frac{2\pi}{60} \cdot N_M\right)^2 \frac{J_L}{t_a}$				
Required Starting Torque (N·m)		$T_P = \frac{2\pi \cdot N_M (J_M + J_L)}{60 \times t_a} + T_L$				
Required Braking Torque (N·m)		$T_{s} = \frac{2\pi \cdot N_{M} (J_{M} + J_{L})}{60 \times t_{d}} - T_{L}$	· · · · · · · · · · · · · · · · · · ·			
Effective Torque (N·m)	$Trms = \sqrt{\frac{TP^2 \cdot ta}{TP^2 \cdot ta}}$		$Trms = \sqrt{\frac{TP^2 \cdot ta + TL^2 (tc + te) + Ts^2 \cdot td}{t}}$			
Min. Starting Time (s)		$t_{am} = \frac{2\pi \cdot N_M (J_M + J_L)}{60 (T_{PM} - T_L)}$ $2\pi \cdot N_M (J_M + J_L)$				
Min. Braking Time (s)		$t_{dm} = \frac{2 \pi \cdot N_M (J_M + J_L)}{60 (T_{PM} + T_L)}$				

	Linear	Motion					
Motions	Rack & Pinion	Chain and Timing Belt					
Mechanical Configuration	$ \begin{array}{c} \mu & \downarrow \rho \\ \mu & \downarrow \rho \\ 1/R & \downarrow \rho \\ 1/R & \downarrow \rho \\ M_{\ell} : \text{Load axis speed (min-1)} & M & : \text{Mass of I} \end{array} $	$\begin{array}{c c} \mu & W & Lp \\ \hline & & & \\ \hline \\ \hline$					
	V_{ℓ} : Load speed (m/min) $1/R$: Gear ratio T_{ℓ} : Load torque at load shaft (N·m) η : Mechanic μ : Friction coefficient T_{pM} : Servomo						
Speed Diagram	· · · ·	$\frac{t}{t}$					
Travel Distance (m)	$S = \frac{V_{\ell}}{60} \cdot \frac{t_a + 2t_c + t_d}{2} \qquad \left(W_{\ell}\right)$	S = Vynere $a = td$. $S =(tm - ta)$					
Load axis speed (min ⁻¹)	$N\ell = rac{V\ell}{P_B}$						
Motor Speed (min-1)	$N_{M} = N\ell \cdot R$						
Load Torque at Motor Shaft (N·m)	$T_L = \frac{9.8 \times \mu \cdot M \cdot P_B + 2\pi \cdot T_{\ell}}{2\pi \cdot R \cdot \eta}$						
Load Moment of Inertia at Motor Shaft (kg·m²)	JL = JL1	+JL2 +JL3 JL3 X JL1 JL3 JL3 JL3 JL2					
Linear Motion	$J_{L1} = M$	$\cdot \left(\frac{P_B}{2\pi R}\right)^2$					
Rotational Motion	$ \begin{array}{c} & \downarrow & L (m) \\ & \downarrow & \downarrow \\ & & \downarrow & \downarrow \\ \end{array} \end{array} $ Inertia for motor shaft> At gear input side $JL2 = JK$ At gear output side $JL3 = \frac{JK}{R^2}$	$\frac{1}{8} M\kappa \cdot D^2 \text{ or } J\kappa = \frac{\pi}{32} \rho \cdot L \cdot D^4$ Mass (kg) Density (kg/m ³)…Iron $\rho = 7.87 \times 10^3 (\text{kg/m}^3)$ …Aluminum $\rho = 2.70 \times 10^3 (\text{kg/m}^3)$					
Running Power (W)	$P_0 = -\frac{2i}{2}$						
Acceleration Power (W)		$(NM)^2 \frac{JL}{ta}$					
Required Starting Torque (N·m) Required Braking Torque		$\frac{M(JM+JL)}{O\times ta} + TL$ $M(JM+JL) - $					
(N·m)		$\frac{M(JM+JL)}{60\times td} - TL$					
Effective Torque (N·m)	$T_{rms} = \sqrt{\frac{TP^2 \cdot t_s}{T}}$	$\frac{t}{t} + TL^2 \cdot tc + Ts^2 \cdot td}{t}$					
Min. Starting Time (s)	60	$\frac{N_M (J_M + J_L)}{(T_{PM} - T_L)}$					
Min. Braking Time (s)	$tdm = \frac{2\pi}{60}$	$\frac{N_M (J_M + J_L)}{(T_{PM} + T_L)}$					

Servomotor Selection Example 1

Speed Diagram

Cycle time $t = \frac{60}{n} = \frac{60}{40} = 1.5$ (s)

Where acceleration time (*ta*) = deceleration time (*ta*) and settling time (*ts*) = 0.1 s when the filter setting of the FIL rotary switch is 0. Acceleration time: $t_a = t_d = t_m - t_s - \frac{60 \times \ell}{V\ell} = 1.2 - 0.1 - \frac{60 \times 0.5}{30} = 0.1$ (s)

Constant-speed time: tc = tm - ts - ta - td = 1.2 - 0.1 - 0.1 - 0.1 = 0.9 (s)

Speed

$$P_B = \pi d = \pi \times 0.064 = 0.201$$

- Load axis speed $N_{\ell} = \frac{V_{\ell}}{P_B} = \frac{30}{0.201} = 149 \text{ (min}^{-1}\text{)}$
- Motor speed $N_M = N_\ell \cdot R = 149 \times 5 = 745 \text{ (min}^{-1})$

• Load Torque at Motor Shaft

$$T_{L} = \frac{\mu \cdot 9.8 \cdot M \cdot P_{B} + 2\pi \cdot T_{\ell}}{2\pi R \cdot \eta} = \frac{0.2 \times 9.8 \times 4 \times 0.201 + 2\pi \times 0.05}{2\pi \times 5 \times 0.9} = 0.0669 \text{ (N·m)}$$

Load Moment of Inertia

- Linear-motion section $J_{L1} = M \left(\frac{P_B}{2\pi R}\right)^2 = 4 \times \left(\frac{0.201}{2\pi \times 5}\right)^2 = 1.639 \times 10^{-4} \, (\text{kg} \cdot \text{m}^2)$
- \bullet Load-shaft motion section: Pulley $\times\,2$ + Gear B

$$J_{L2} = \frac{\sum J_i}{R^2} = \frac{1}{5^2} \times \frac{\pi}{32} \times (2690 \times 0.02 \times (0.064)^4 \times 2 + 7870 \times 0.02 \times (0.1)^4) = 0.687 \times 10^{-4} \text{ (kg·m}^2)$$

• Motor-shaft motion section: Gear A + Coupling

$$J_{L3} = \frac{\pi}{32} \times 7870 \times 0.02 \times (0.02)^4 + \frac{1}{8} \times 0.3 \times (0.03)^2 = 0.362 \times 10^{-4} \text{ (kg·m}^2\text{)}$$

• Load moment of inertia at motor shaft $J_L = J_{L1} + J_{L2} + J_{L3} = (1.639 + 0.687 + 0.362) \times 10^{-4} = 2.69 \times 10^{-4} (kg \cdot m^2)$

Load Running Power

$$P_O = \frac{2\pi N_M \cdot T_L}{60} = \frac{2\pi \times 745 \times 0.0669}{60} = 5.2 \text{ (W)}$$

Load Acceleration Power

 $Pa = \left(\frac{2\pi}{60} N_{M}\right)^{2} \quad \frac{J_{L}}{t_{a}} = \left(\frac{2\pi}{60} \times 745\right)^{2} \times \frac{2.69 \times 10^{-4}}{0.1} = 16.4 \text{ (W)}$

Provisional Selection

Selection criteria • $T_L \leq$ Motor rated torque

- Pa + Po =(1 to 2) ×Motor rated output
- $N_M \leq$ Motor rated speed or maximum speed
- $J_L \leq$ Allowable load moment of inertia of SERVOPACK

The following combination of SERVOPACK and servomotor satisfies the selection criteria.

- Servomotor : SJME-02AMB41
- SERVOPACK: SJDE-02APA

<Ratings>

Rated output	: 200 (W)
Rated speed	: 3000 (min ⁻¹)
Maximum speed	: 4500 (min ⁻¹)
Rated torque	∶ 0.637 (N·m)
 Instantaneous peak torque 	∶ 1.91 (N·m)
 Rotor moment of inertia 	∶ 0.330 × 10 ⁻⁴ (kg⋅m²)
Allowable load moment of inertia of SERVOPA	CK : 3 × 10 ⁻⁴ (kg⋅m²)

Final Selection

Required Starting Torque

 $T_P = \frac{2\pi N_M (J_M + J_L)}{60t_a} + T_L = \frac{2\pi \times 745 \times (0.330 + 2.69) \times 10^{-4}}{60 \times 0.1} + 0.0669 = 0.303 \text{ (N-m)}$

< 1.91 (N·m) = Instantaneous peak torque

Therefore, the provisionally selected servomotor can be used.

Required Braking Torque

 $T_{S} = \frac{2\pi N_{M} (J_{M} + J_{L})}{60t_{a}} - T_{L} = \frac{2\pi \times 745 \times (0.330 + 2.69) \times 10^{-4}}{60 \times 0.1} - 0.0669 = 0.169 \text{ (N·m)}$

< 1.91 (N·m) = Instantaneous peak torque Therefore, the provisionally selected servomotor can be used.

Effective Torque

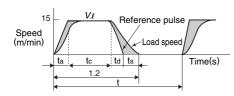
$$T_{rms} = \sqrt{\frac{T_{P}^{2} \cdot t_{a} + T_{L}^{2} \cdot t_{c} + T_{S}^{2} \cdot t_{d}}{t}} = \sqrt{\frac{(0.303)^{2} \times 0.1 + (0.0669)^{2} \times 0.9 + (0.169)^{2} \times 0.1}{1.5}}$$

= 0.103 (N·m)
< 0.637 (N·m) = Rated torque

Therefore, the provisionally selected servomotor can be used.

The provisional selection of SERVOPACK and servomotor has been confirmed to have sufficient capacity to satisfy the selection criteria.

Servomotor Selection Example 2


Mechanical Specifications

 Load speed 	:	Vl	= 15 m/mi
 Mass of linear-motion section 	:	М	= 80 kg
 Ball screw length 	:	Lв	= 0.8 m
 Ball screw diameter 	:	Dв	= 0.016 m
 Ball screw lead 	:	Рв	= 0.005 m
 Coupling mass 	:	Мс	= 0.3 kg

- Coupling outer diameter : $D_C = 0.03$ m
- in Positioning frequency : n = 40 times/min
 - Traveling distance : $\ell = 0.25 \text{ m}$
 - Positioning time : $t_m = 1.2$ s max.
 - Electrical stopping accuracy : $\delta = \pm 0.01 \text{ mm}$
 - Friction coefficient : μ = 0.2
 Mechanical efficiency : η = 0.9
 - (90%)

Speed Diagram

Cycle time $t = \frac{60}{n} = \frac{60}{40} = 1.5$ (s)

Where acceleration time (*t_a*) = deceleration time (*t_d*) and settling time (*t_s*) = 0.1 s when the filter setting of the FIL rotary switch is 0. Acceleration time: $t_a = t_d = t_m - t_s - \frac{60 \times \ell}{V\ell} = 1.2 - 0.1 - \frac{60 \times 0.5}{30} = 0.1$ (s)

Constant-speed time:
$$tc = tm - ts - ta - ta = 1.2 - 0.1 - 0.1 - 0.1 = 0.9$$
 (s)

Speed

- Load axis speed $N\ell = \frac{V\ell}{P_B} = \frac{15}{0.005} = 3000 \text{ (min}^{-1}\text{)}$
- Motor speed The gear ratio is 1/R = 1/1 because of direct coupling. Then, $N_M = N\ell \cdot R = 3000 \times 1 = 3000 \text{ (min}^{-1})$

• Load Torque at Motor Shaft

$$T_{L} = \frac{\mu \cdot 9.8 \cdot M \cdot P_{B}}{2\pi R \cdot \eta} = \frac{0.2 \times 9.8 \times 80 \times 0.005}{2\pi \times 1 \times 0.9} = 0.139 \text{ (N·m)}$$

• Load Moment of Inertia

Ball screw

Linear-motion section

$$J_{L1} = M \left(\frac{P_B}{2\pi R}\right)^2 = 80 \times \left(\frac{0.005}{2\pi \times 1}\right)^2 = 0.507 \times 10^{-4} \text{ (kg·m}^2)$$
$$J_B = \frac{\pi}{32} \rho \cdot L_B \cdot D_B^4 = \frac{\pi}{32} \times 7.87 \times 10^3 \times 0.8 \times (0.016)^4 = 0.405 \times 10^{-4} \text{ (kg·m}^2)$$

• Coupling
$$J_c = \frac{1}{8} M_c \cdot D_c^2 = \frac{1}{8} \times 0.3 \times (0.03)^2 = 0.338 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$$

• Load moment of inertia at motor shaft

 $J_L = J_{L1} + J_B + J_C = 1.25 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$

• Load Running Power

$$P_O = \frac{2\pi N_M \cdot T_L}{60} = \frac{2\pi \times 3000 \times 0.139}{60} = 43.7 \text{ (W)}$$

Load Acceleration Power

$$Pa = \left(\frac{2\pi}{60} N_{M}\right)^{2} \frac{J_{L}}{t_{a}} = \left(\frac{2\pi}{60} \times 3000\right)^{2} \times \frac{1.25 \times 10^{-4}}{0.1} = 123.4 \text{ (W)}$$

Provisional Selection

- Selection criteria $T_L \leq$ Motor rated torque
 - Pa + Po = (1 to 2) × Motor rated output
 - $N_M \leq$ Motor rated speed or maximum speed
 - $J_L \leq$ Allowable load moment of inertia of SERVOPACK

The following combination of SERVOPACK and servomotor satisfies the selection criteria.

- Servomotor : SJME-02AMB41
- SERVOPACK: SJDE-02APA

<Ratings>

Rated output	:	200 (W)
Rated speed	:	3000 (min ⁻¹)
 Maximum speed 	:	4500 (min ⁻¹)
Rated torque	:	0.637 (N∙m)
 Instantaneous peak torque 	:	1.91 (N∙m)
 Rotor moment of inertia 	:	0.330 × 10⁻₄ (kg⋅m²)
• Allowable load moment of inertia of SERVOPACK	:	3 × 10⁻₄ (kg⋅m²)

Final Selection

Required Starting Torque

 $T_{P} = \frac{2 \pi N_{M} (J_{M} + J_{L})}{60 t_{a}} + T_{L} = \frac{2 \pi \times 3000 \times (0.330 + 1.25) \times 10^{-4}}{60 \times 0.1} + 0.139 \approx 0.635 \text{ (N·m)}$

< 1.91 (N·m) = Instantaneous peak torque Therefore, the provisionally selected servomotor can be used.

Required Braking Torque

$$T_{S} = \frac{2\pi N_{M} (J_{M} + J_{L})}{60 t_{a}} - T_{L} = \frac{2\pi \times 3000 \times (0.330 + 1.25) \times 10^{-4}}{60 \times 0.1} - 0.139 \approx 0.357 \text{ (N} \cdot \text{m)}$$

< 1.91 (N·m) = Instantaneous peak torque Therefore, the provisionally selected servomotor can be used.

Effective Torque

$$T_{rms} = \sqrt{\frac{T_{P}^2 \cdot t_a + T_{L}^2 \cdot t_c + T_{S}^2 \cdot t_d}{t}} = \sqrt{\frac{(0.635)^2 \times 0.1 + (0.139)^2 \times 0.9 + (0.357)^2 \times 0.1}{1.5}}$$

$$\approx 0.217 \text{ (N·m)}$$

$$< 0.637 \text{ (N·m)} = \text{Rated torque}$$

Therefore, the provisionally selected servomotor can be used.

The provisional selection of SERVOPACK and servomotor has been confirmed to have sufficient capacity to satisfy the selection criteria.

List of Parameters

<Conditions to Validate Settings>

- ©: Immediately validated after setting or changing
- \bigcirc : Validated when DEN = 1
- (Do not change when DEN = 0. If any change is made when DEN = 0, safe operation cannot be secured.)
- riangle: Validated when the power supply is turned OFF and then ON again, or by sending CONFIG command.

Pn000 Image: Selection Basic Switch 0 - - - 0010 4h. 3d: 2nd 1st digit digit digit digit (stright digit digit digit (stright digit digit)) *: Fixed parameter. Do not change. Pn000 Image: Selection Selection 0 Seles CCW as forward direction. (Reverse Rotation Mode). 1 2 and 3 Reserved (Do not change.) Pn00A Filter Setting (New) 0000H 0000FH - 0000H Pn20E Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn210 Electronic Gear Ratio (Denominator) 1 1073741824 - 1 Pn304 JOG Speed 0 10000 min-1 500 Input Signal Selection 1 2881H 8881H - 2881H Pn50A Imput Signal Selection 2 8883H 8888H - 8883H Pn50B Input Signal Selection 5 8488H 8888H - 8883H N: Bi	Validatio	Factory Setting	Units	Max. Set Value	Min. Set Value	Name	Parameter No.	
Pn000 n. (i)	Δ		_	-				
0 Sets CCW as forward direction. 1 Sets CW as forward direction. (Reverse Rotation Mode). 2 and 3 Reserved (Do not change.) Pn00A Filter Setting (Numerator) 00000H 0000FH - 00000H Pn2DE Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn20E Electronic Gear Ratio (Denominator) 1 1073741824 - 1 Pn304 JOG Speed 0 10000 min*1 500 Input Signal Selection 1 2881H 8881H - 2881H M: 3rd 2nd 1st digit *: Fixed parameter. Do not change. Pn50B Input Signal Selection 5 84881 8888H - 8883H M: 3rd 2nd 1st digit				er. Do not change.	*: Fixed paramete	n. 🛛 🖛 🕇 🖵		
0 Sets CCW as forward direction. 1 Sets CW as forward direction. (Reverse Rotation Mode). 2 and 3 Reserved (Do not change.) Pn00A Filter Setting from 0000H Pn20E Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn20E Electronic Gear Ratio (Denominator) 1 1073741824 - 1 Pn304 JOG Speed 0 10000 min* 500 Input Signal Selection 1 2881H 8881H - 2881H Pn50A Electronic Gear Ratio (Denominator) *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. Pn50A Electronic Gear Ratio (Denominator) *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. Pn50B Input Signal Selection 2 8883H B888H - 8883H Pn50B Input Signal Selection 2 8883H B888H - 8883H Pn50B Input Signal Selection 5 8488H B888H - 8483H Mayays sets the signal to ON to enable reverse run. *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. *: F				Direction Selection	Rotation I		Pn000	
Pn00A Filter Setting (****) 0000H 0000FH - 0000H Pn2DE Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn210 Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn210 Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn210 Electronic Gear Ratio (Denominator) 1 1073741824 - 1 Pn304 JOG Speed 0 10000 min*1 500 Input Signal Selection 1 2881H 8881H - 2881H Pn50A Input Signal Selection 2 8883H Reverse run enabled when CN1-4 input signal is ON (L-level). 8 Always sets the signal to ON to enable forward run. *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. N Input Signal Selection 5 8488H S888H - 8488H Aft 3rd 2rd 1st dig			rd direction.	Sets CCW as forwa	0			
Pn00A Filter Setting ^(Note) 0000H 0000FH - 0000H Pn20E Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn210 Electronic Gear Ratio (Denominator) 1 1073741824 - 1 Pn304 JOG Speed 0 10000 min'i 500 Input Signal Selection 1 2881H 8881H - 2881H Pn50A # 3 d 2nd 1st digit di		Rotation Mode).	I direction. (Reverse	Sets CW as forward	1			
Pn20E Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn210 Electronic Gear Ratio (Denominator) 1 1073741824 - 1 Pn304 JOG Speed 0 10000 min ⁻¹ 500 Input Signal Selection 1 2881H 8881H - 2881H Pn50A Imput Signal Selection 1 2881H 8881H - 2881H Pn50A Imput Signal Selection 2 8883H Reverse run enabled when CN1-4 input signal is ON (L-level). 8 Always sets the signal to ON to enable forward run. Pn50B Input Signal Selection 2 8883H 8883H - 8883H Pn50B Input Signal Selection 5 84883H Ba883H - 8883H Input Signal Selection 5 84883H 8888H - 8483H Input Signal Selection 5 84884 8888H - 8488H Input Signal Selection 5 84884 8888H - 8488H Input Signal Selection 5 84884 8888H - 8488H			hange.)	Reserved (Do not c	2 and 3			
Pn20E Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn210 Electronic Gear Ratio (Denominator) 1 1073741824 - 1 Pn304 JOG Speed 0 10000 min ⁻¹ 500 Input Signal Selection 1 2881H 8881H - 2881H Pn50A Imput Signal Selection 1 2881H 8881H - 2881H Pn50A Imput Signal Selection 2 8883H Reverse run enabled when CN1-4 input signal is ON (L-level). 8 Always sets the signal to ON to enable forward run. Pn50B Input Signal Selection 2 8883H 8888H - 8883H Pn50B Input Signal Selection 5 84883H 8888H - 8483H Pn50B Input Signal Selection 5 84883H 8888H - 8483H Pn50B Input Signal Selection 5 84884 8888H - 8488H Pn50B Input Signal Selection 5 84884 8888H - 8488H Pn515 Input Signal Selection 5								
Pn20E Electronic Gear Ratio (Numerator) 1 1073741824 - 1 Pn210 Electronic Gear Ratio (Denominator) 1 1073741824 - 1 Pn304 JOG Speed 0 10000 min ⁻¹ 500 Input Signal Selection 1 2881H 8881H - 2881H Pn50A Imput Signal Selection 1 2881H 8881H - 2881H Pn50A Imput Signal Selection 2 8883H Reverse run enabled when CN1-4 input signal is ON (L-level). 8 Always sets the signal to ON to enable forward run. Pn50B Input Signal Selection 2 8883H 8888H - 8883H Pn50B Input Signal Selection 5 84883H 8888H - 8483H Pn50B Input Signal Selection 5 84883H 8888H - 8483H Pn50B Input Signal Selection 5 84884 8888H - 8488H Pn50B Input Signal Selection 5 84884 8888H - 8488H Pn515 Input Signal Selection 5	O	0000H	_	0000FH	0000H	Filter Setting (Note)	Pn00A	
Pn304 JOG Speed 0 10000 min ⁻¹ 500 Input Signal Selection 1 2881H 8881H - 2881H Pn50A Input Signal Selection 1 2881H *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. Pn50A Input Signal Selection 2 8883H 8883H - 8883H Pn50B Input Signal Selection 2 8883H 8883H - 8883H Pn50B Input Signal Selection 2 8883H 8883H - 8883H Pn50B Input Signal Selection 5 8883H 8888H - 8883H Pn50B Input Signal Selection 5 8488H 8888H - 8488H Pn50B Input Signal Selection 5 8488H 8888H - 8488H Pn50B Input Signal Selection 5 8488H 8888H - 8488H Pn50B Input Signal Selection 5 8488H 8888H - 8488H Pn50B Input Signal Selection 5 8488H 8888H - 8488H Pn515 Input Signal Selection 5 84888H -	\bigtriangleup	1	-	1073741824	1		Pn20E	
Input Signal Selection 1 2881H 8881H – 2881H 4th 3rd 2nd 1st digit digit digit digit % % % *: Fixed parameter. Do not change. 2881H - 2881H - 2881H <td>\bigtriangleup</td> <td>1</td> <td>-</td> <td>1073741824</td> <td>1</td> <td>Electronic Gear Ratio (Denominator)</td> <td>Pn210</td>	\bigtriangleup	1	-	1073741824	1	Electronic Gear Ratio (Denominator)	Pn210	
Pn50A ⁴ th 3rd 2nd 1st ⁴ ti 3rd 2nd 1st ⁴ ti 3rd 2nd 1st ⁴ ti 3rd 2nd 1st ⁴ ti 3rd 2nd 1st ¹ ti x x x ⁴ ti Fixed parameter. Do not change. Pn50A ¹ ti X x x ¹ ti X x x ¹ ti X x x Pn50A ¹ ti X x x ¹ ti X x x ¹ ti X x x Input Signal Selection 2 ¹ ti X x ¹ ti X x ¹ ti X x Pn50B ¹ ti X x ¹ ti X x ¹ ti X x ¹ ti X x Pn50B ¹ ti X x Pn50B ¹ ti X x Pn50B ¹ ti X x Pn50B ¹ ti X x ¹ ti X x ¹ ti X x ¹ ti X x Pn50B ¹ ti X x	O	500	min ⁻¹	10000	0	JOG Speed	Pn304	
Pn50A A: Fixed parameter. Do not change. Pn50A B B 1 Input Signal Selection 2 8883H B B 1 - Ath 3rd 2nd 1st 4th 3rd 2nd 1st digit digit digit digit *: Fixed parameter. Do not change. N. B B B ** * * - Pn50B Input Signal Selection 2 Input Signal Selection 2 8883H B B B - * * * - N-OT Signal Mapping 3 Reverse run enabled when C1-3 input signal is ON (L-level). 8 Always sets the signal to ON to enable reverse run. N-OT Signal Mapping 3 Always sets the signal to ON to enable reverse run. Input Signal Selection 5 8488H Always sets the signal to ON to enable reverse run. Input Signal Selection 5 8488H Always sets the signal to ON to enable reverse run. Input Signal Selection 5 8488H *: Fixed parameter. Do not change. N. *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. *: Fixed paramete	\bigtriangleup	2881H	_	8881H	2881H	Input Signal Selection 1		
P-OT Signal Mapping 2 Forward run enabled when CN1-4 input signal is ON (L-level). 8 Always sets the signal to ON to enable forward run. 8 Always sets the signal to ON to enable forward run. 9 4th 3rd 2nd 1st digit di				er. Do not change.	*: Fixed paramete	n. 🗍 🛽 🖪 🗍	Do 504	
Input Signal Selection 2 8883H 8888H - 8883H 4th 3rd 2nd 1st digit at *: Fixed parameter. Do not change. - 8488H				nal Mapping	P-OT Sig		FIISUA	
Input Signal Selection 2 8883H - 8883H 4th 3rd 2nd 1st digit digit digit digit digit digit digit *: Fixed parameter. Do not change. - 8883H N-OT Signal Mapping 3 Reverse run enabled when C1-3 input signal is ON (L-level). 8 3 Reverse run enabled when C1-3 input signal is ON (L-level). 8 8888H - 8 Always sets the signal to ON to enable reverse run. *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. 1 Input Signal Selection 5 8488H 8888H - 8488H 4th 3rd 2nd 1st digit digit digit digit strigt digit digit digit * * * *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. N. 8 8 - 8488H 4888H - 9n515 8 8 - 8488H - 8488H								
Pn50B 		forward run.	nal to ON to enable	Always sets the sig	8			
Pn50B 								
Pn50B	\bigtriangleup	8883H	-	8888H	8883H	Input Signal Selection 2		
Input Signal Selection 5 8488H 8888H – 8488H 4th 3rd 2nd 1st digit				er. Do not change.	*: Fixed paramete	digit digit digit digit n. 8 8 8 🖵		
8 Always sets the signal to ON to enable reverse run. 8 Always sets the signal to ON to enable reverse run. 9 Input Signal Selection 5 4th 3rd 2nd 1st digit d				nal Mapping	N-OT Sigi		Pn50B	
Pn515 Input Signal Selection 5 8488H 8888H - 8488H 8888H 8888H - 8488H 8888H - 8488H 8888H - 8488H 8888H - 8488H 8888H 8888H - 8488H 8888H - 8488H 8888H - 8488H 8888H 8888H - 8488H 8888H 8888H 8888H - 8488H 8888H 88888H 88888H 88888H 88888H 88888H 88888H		nal is ON (L-level).	when C1-3 input sign	Reverse run enabled	3			
Pn515		reverse run.	nal to ON to enable	Always sets the sig	8			
Pn515 Ath 3rd 2nd 1st digit digit digit ath 3rd 2nd 1st digit digit digit *: Fixed parameter. Do not change. *: Fixed parameter. Do not change. E-STP Signal Mapping 4 Emergency stop when C1-6 input signal is OFF (H-level).								
Pn515		8488H	_	8888H	8488H	Input Signal Selection 5		
Pn515								
Pn515								
4 Emergency stop when C1-6 input signal is OFF (H-level).								
4 Emergency stop when C1-6 input signal is OFF (H-level).				gnal Mapping	E-STP Sid		Pn515	
		is OFF (H-level).	en C1-6 input signal				111010	
Pn522 Positioning Completion Width 0 1073741824 1 reference unit 10	0	10	1 reference unit	1073741824	0	Positioning Completion Width	Pn522	
Pn524 NEAR Signal Width 1 1073741824 1 reference unit 100	0							

Note : The setting method is the same as for FIL rotary switch.

Parameter No.	Name	Min. Set Value	Max. Set Value	Units	Factory Setting	Validation		
	Communication Control 0000H 0F73H - 0040H 4th 3rd 2nd 1st digit digit digit digit git digit digit digit x x *: Fixed parameter. Do not change. *: Fixed parameter. *:							
		Warning (Check Mask					
		0	Normal status					
Pn800		1	Ignores data setting	g warning (A.94 *).				
	2 Ignores command warning (A.95 *).							
		3	3Ignores both A.94 * and A.95 *.4Ignores communications warning (A.960).					
		4						
		5	Ignores both A.94					
		6	Ignores both A.95					
	7 Ignores A.94 *, A.95 *, and A.960.							
	Function Selection Application 6 (Software LS)	0000H	0103H	-	0003H	0		
	4th 3rd 2nd 1st digit digit digit digit n. 0 □ 0 □ * *	*: Fixed paramete	er. Do not change.					
		Software	Limit Function					
		0	Forward and revers	e software limits ena	abled.			
Pn801		1	Forward software li					
		2	Reverse software li					
		3	Software limits disa	bled in both direction	IS.			
		Software	Limit Check Using R	eferences				
		0		neck using reference	s			
		1	Software limit chec	k using references				
Pn803	Origin Range	0	250	1 reference unit	10	0		
Pn804	Forward Software Limit	-1073741823	1073741823	1 reference unit	1073741823	0		
Pn806	Reverse Software Limit	-1073741823	1073741823	1 reference unit	-1073741823	0		
Pn80B	Linear Acceleration Parameter	1	65535	10000 reference units/s ²	100	0		
Pn80E	Linear Deceleration Parameter	1	65535	10000 reference units/s ²	100	0		
Pn814	Final Travel Distance for External Input Positioning	-1073741823	1073741823	1 reference unit	100	0		
	Homing Mode Setting 4th 3rd 2nd 1st digit digit digit digit	0000H *: Fixed parameter	0001H	-	0000H	0		
D-010	n. 0 0 0 0 1		C C					
Pn816		Homing D	irection					
		0	Forward					
		1	Reverse					
Pn817	Homing Approach Speed 1	0	65535	100 reference units/s ²	50	0		
Pn818	Homing Approach Speed 2	0	65535	100 reference units/s ²	5	0		
Pn819	Final Travel Distance for Homing	-1073741823	1073741823	1 reference unit	100	0		
Pn820	Latching Area Upper Limit	-2147483648	2147483648	1 reference unit	0	0		
Pn822	Latching Area Lower Limit	-2147483648	2147483648	1 reference unit	0	0		

MECHATROLINK-I Main Commands

_						
Classifications	Command	Command Name	Functions	Processing	Synchronization	Subcommand
Chaochicationic	Code			Classifications	Classifications	
	00H	NOP	No Operation	N	Asynchronous	Can be used
	01H	PRM_RD	Read Parameter	D	Asynchronous	Cannot be used
	02H	PRM_WR	Write Parameter	D	Asynchronous	Cannot be used
	03H	ID_RD	Read ID	D	Asynchronous	Cannot be used
Common	04H	COFING	Setup Device	С	Asynchronous	Cannot be used
Commands	05H	ALM_RD	Read Alarm or Warning	D	Asynchronous	Cannot be used
Commanus	06H	ALM_CLR	Clear Alarm or Warning	С	Asynchronous	Cannot be used
	0DH	SYNC_SET	Start Synchronous Communication	N	Asynchronous	Cannot be used
	0EH	CONNECT	Establish Connection	N	Asynchronous	Cannot be used
	0FH	DISCONNECT	Release Disconnection	N	Asynchronous	Cannot be used
	1CH	PPRM_WR	Write Stored Parameter	D	Asynchronous	Cannot be used
	20H	POS_SET	Set Coordinates	D	Asynchronous	Cannot be used
	21H	BRK_ON	Apply Brake	С	Asynchronous	Cannot be used
0	22H	BRK_OFF	Release Brake	С	Asynchronous	Cannot be used
Common Motion	23H	SENS_ON	Turn Sensor ON	С	Asynchronous	Cannot be used
Motion Commands	24H	SENS_OFF	Turn Sensor OFF	С	Asynchronous	Cannot be used
	25H	HOLD	Stop Motion	М	Asynchronous	Can be used
	28H	LTMOD_ON	Request Latch Mode	С	Asynchronous	Cannot be used
	29H	LTMOD_OFF	Release Latch Mode	С	Asynchronous	Cannot be used
	30H	SMON	Status Monitoring	D	Asynchronous	Can be used
	31H	SV_ON	Servo ON	С	Asynchronous	Can be used
	32H	SV_OFF	Servo OFF	С	Asynchronous	Can be used
0.0.00	34H	INTERPOLATE	Interpolation Feed	M	Synchronous	Can be used
Servo	35H	POSING	Positioning	М	Asynchronous	Can be used
Standard	36H	FEED	Constant Speed Feed	М	Asynchronous	Can be used
Commands	38H	LATCH	Interpolation Feeding with Position Detection	М	Synchronous	Can be used
	39H	EX_POSING	External Input Positioning	М	Asynchronous	Can be used
	3AH	ZRET	Homing	М	Asynchronous	Can be used
	3EH	ADJ	Adjustment	D	Asynchronous	Cannot be used

MECHATROLINK-I Subcommands

Command Code	Command Name	Functions	Command Code	Command Name	Functions
00H	NOP	No Operation	1CH	PPRM_WR	Write Stored Parameter
01H	PRM_RD	Read Parameter	28H	LTMOD_ON	Request Latch Mode
02H	PRM_WR	Write Parameter	29H	LTMOD_OFF	Release Latch Mode
05H	ALM_RD	Read Alarm or Warning	30H	SMON	Status Monitoring

Service Life

Servodrive parts are subject to deterioration caused by mechanical wear and aging.

• The following values for the service life are only for reference. The service life varies with environmental conditions and applications. Refer to the values for the service life in the tables and contact your Yaskawa representative to determine whether part replacement is required. If a problem occurs before the estimated service life expires, an inspection is necessary.

SERVOPACKs

Part	Service Life	Remarks	
Cooling fan	30,000 hours	The service life varies with the operating conditions.	
		Check for abnormal sounds or vibration with daily inspection.	

Note : The following cooling fans are available for replacement. Contact your Yaskawa representative when ordering. • SJDE-01 to 04: JZSP-CHF08-1 • SJDE-08: JZSP-CHF08-2

Servomotors

Part	Service Life	Remarks	
Decrimen	20,000 hours	The service life varies with the operating conditions.	
Bearings	20,000 nours	Check for abnormal sounds or vibration with daily inspection.	

JUNMA SERIES

IRUMA BUSINESS CENTER (SOLUTION CENTER) 480, Kamifujisawa, Iruma, Saitama 358-8555, Japan Phone 81-4-2962-5696 Fax 81-4-2962-6138

YASKAWA ELECTRIC AMERICA, INC. 2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone 1-847-887-7000 Fax 1-847-887-7370

YASKAWA ELÉTRICO DO BRASIL LTDA.

Avenida Fagundes Filho, 620 Bairro Saude-Sao Pãulo-SP, Brazil CEP: 04304-000 Phone 55-11-5071-2552 Fax 55-11-5581-8795

YASKAWA ELECTRIC EUROPE GmbH

Am Kronberger Hang 2, 65824 Schwalbach, Germany Phone 49-6196-569-300 Fax 49-6196-569-312

YASKAWA ELECTRIC UK LTD. 1 Hunt Hill Orchardton Woods Cumbernauld, G68 9LF, United Kingdom Phone 44-1236-735000 Fax 44-1236-458182

YASKAWA ELECTRIC KOREA CORPORATION 7F, Doore Bldg. 24, Yeoido-dong, Youngdungpo-Ku, Seoul 150-877, Korea Phone 82-2-784-7844 Fax 82-2-784-8495

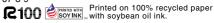
YASKAWA ELECTRIC (SINGAPORE) PTE. LTD. 151 Lorong Chuan, #04-01, New Tech Park 556741, Singapore Phone 65-6282-3003 Fax 65-6289-3003

YASKAWA ELECTRIC (SHANGHAI) CO., LTD. No.18 Xizang Zhong Road. Room 1702-1707, Harbour Ring Plaza Shanghai 200001, China Phone 86-21-5385-2200 Fax 86-21-5385-3299

YASKAWA ELECTRIC (SHANGHAI) CO., LTD. BEIJING OFFICE Room 1011A, Tower W3 Oriental Plaza, No.1 East Chang An Ave. Dong Cheng District, Beijing 100738, China Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei, Taiwan Phone 886-2-2502-5003 Fax 886-2-2505-1280



YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2007 YASKAWA ELECTRIC CORPORATION. All rights reserved.

LITERATURE NO. KAEP S800000 41A Published in Japan November 2007 07-11 07-8-9

